Хабрахабр

Заметки фитохимика. Картофель. Часть вторая. Рассказы про белки/жиры или «День сыроеда»

Я думаю постоянные читатели моих заметок уже заметили достаточно скептическое мое отношение ко всевозможным, с позволения сказать, пищевым и диетологическим девиациям вроде сыроедения, моноедения, праноедения («тысячи их»). Но сегодня я хочу поговорить о таких «нутриентах» картофеля, которые в большинстве случаев доступны только тем, кто употребляет картофель в сыром виде (ну или делает картофельный сок) и не принесет особой пользы «варщикам и жарщикам всех мастей» (к коим относится, кстати, и автор этих строк). Должен же быть праздник и на улице Сыроеда. Вот этот день и настал…

В общем, чтобы узнать, как картошечкой вылечить артрит и снизить артериальное давление, какой размер у картофельного генома и где нынче производят картофельный квас — нужно заглянуть под cut.

— Биохимию! Биохимию! — кричали пионеры и доставали блокноты.
перефразировано из известного анекдота

Бульбяны тлушч, он же Fat of the...potato

Если говорить начистоту, то вводить такое понятие как «картофельный жир» даже как-то и не comme il faut, потому что содержание жиров (они же липиды) в клубнях очень низкое — всего лишь порядка 0,2 — 2 грамма/кг сырой массы (или в среднем 1,2 г/кг). Примерно о том же говорит и моя любимая база USDA, приписывая 100 граммам сваренного в мундире картофеля 0,1 г липидов, из которых 0,03 г приходится на насыщенные жирные кислоты, 0,002 на мононенасыщенные жирные кислоты и 0,043 г полиненасыщенных жирных кислот. И это при том, что для здорового взрослого организма в день требуется примерно до 17 грамм омега-6 и до 2 грамм омега-3 полиненасыщенных жирных кислот. В общем, можно точно сказать, что жирком поживиться из картофеля не удастся… Но в целом не все так просто, мы ведь ищем качество, а не количество.

Под спойлером для продвинутых читателей — схема биосинтеза Начну с того, что, как ни удивительно, но все липиды синтезируются в клубнях картофеля из сахарозы.

Схема синтеза крахмала и жиров в картофеле

Сахароза превращается в UDP-глюкозу и фруктозу в клетках клубня с помощью сахароза синтетазы. Большая часть углеводов попадает в растительный амилопласт и используется для производства АДФ-глюкозы, предшественника в синтезе крахмала. Незначительное количество углеводов метаболизируется посредством гликолиза или превращается в ацетил-КоА и малонил-КоА для синтеза жирных кислот в том же амилопласте. Жирные ацильные группы переносятся специализированными белками в эндоплазматическую сеть, где в дальнейшем идут для биосинтеза липидов.

Обозначения: ACCase — Ацетил-СоА карбоксилаза, AGP — АДФ-глюкоза пирофосфорилаза, ACP — белок-носитель для ацильных групп, AATP — пластидный АТФ/АДФ-переносчик, bP — бисфосфат, CoA — коэнзим A, DAG — диацилглицерин, DGAT acyl-CoA — диацилглицерин ацилтрансфераза, Frc — фруктоза, Glc — глюкоза, P — фосфат, PGM — пластидная фосфоглюкомутаза, TAG — триглицериды

Свободных жирных кислот и триглицеридов в картофеле — следовые количества, но зато есть фосфолипиды (фосфатидилхолин — 30,7 мол. %, фосфатидилэтаноламин — 19,6%, фосфатидилинозитол — 9,3%, фосфатидная кислота — 3,2%, фосфатидилсерин — 1,5%, фосфатидилглицерин — 1,2% и дифосфатидилглицерин (кардиолипин) — 0,7%) и галактолипиды. Если о фосфолипидах и их свойствах я уже рассказывал в разделе Fat of the...banana своей последней «банановой» статьи (а значит, все сказанное там, применимо и к картофелю), то вот о галактолипидах кратенько расскажу сейчас. По сути, это разновидность гликолипидов, веществ, содержащих в своем составе неполярный «хвост» — остаток липида (жирной кислоты), связанный ковалентной (гликозидной) связью с полярным углеводным остатком (буквально сахарной «головой»). В случае галактолипидов, в качестве углеводного остатка выступает галактоза.

В целом гликолипиды отвечают за стабильность клеточной мембраны и за процессы распознавания «свой-чужой», как лежащие в основе имунного ответа, так и позволяющие клеткам срастаться между собой, образуя ткани. Кроме того, гликолипиды находятся на поверхности мембран эукариотических клеток, простираясь от двойного липидного слоя в «открытый космос» внеклеточной среды. Возвращаясь к галактолипидам, можно сказать что чаще всего они принимают непосредственное участие в процессах фотосинтеза и выступают в качестве резервного «аналога» фосфолипидов, в случае недостатка в организме фосфора. Помимо того, что галактолипиды обладают бОльшей биодоступностью, чем свободные жирные кислоты, они также способны проявлять и хорошую противовоспалительную активность. В качестве примера может служить шиповник, содержащий галактолипиды и обладающий выраженным противовоспалительным действием (противоартритным, в частности).

В качестве примера можно привести распространенную на побережьях Атлантического и Тихого океана водоросль фукус, которую никак не может из-за присутствия галактолипидов поесть тот самый милый морской ёжик. Интересным фактом является то, что галактолипиды также могут выступать и в роли отпугивающего средства (антифиданта) для морских растений (так же, как и всевозможные танины для наземных).

Cовсем по вершкам о связанных с жирами соединениям, присутствующим в клубнях:

статью Заметки фитохимика. Во-первых, это уже знакомые нам фитостеролы (см. В свежих картофельных клубнях можно найти достаточно много свободных стеринов. Закат эпохи хабра-банана чтобы освежить знания о фитостеринах/стеролах). 1–43. Свежие клубни картофеля содержат около 43. А значит что? 7% β-ситостерина (от общего количества растительных стеринов), кампестерин (26%), Δ5-авенастерин (20%), и 10% остатка примерно поровну делят между собой брассикастерин, Δ7-авенастерин и стигмастерин и их эфиры. уже упомянутую выше банана-статью): А значит subj неправ (почему — см.

Но зачем ты вместе с бульбой жрешь это мясо и ложишся спать ?

А затем, что фитостерины бульбы снижают всасывание холестерина мяса, не с бананом же это мясо многострадальное, ей богу, жрать…

Во-вторых, липофильный биополимер суберин, который является основным компонентом внутренней части картофельной кожуры. Суберин состоит из т.н. субериновых кислот (пробковых кислот) и глицерина. Сами кислоты иногда используются для синтеза лекарств (таких вот, по данным русской википедии) и биоразлагаемых пластиков. А суберин — суберин, друзья, это, грубо говоря, и есть та самая пробка, абсолютно одинаковая что в винной бутылке, что в виде отделочного материала на стенке кухни. «Грубо говоря» потому, что пробка — это смесь суберина, клетчатки, лигнина и различных растительных восков.

Важно, что сырой картофель практически не имеет запаха, ибо содержит очень малые количества летучих веществ. Ну и в-третьих, именно жиры отвечают за тот самый картофельный запах. Приятные запахи свежесваренного картофеля, равно как жареного и запеченного, формируются из-за того, что происходит окисление ненасыщенных жирных кислот (которых и содержится то мизерное количество) — в основном, линолевой и линоленовой. Как только пошло окисление липидов — пошли и запахи (кстати, именно с процессами окисления липидов и борются все антиоксиданты). Как утверждают авторы работы, разница во вкусах вареного картофеля различных сортов связана с содержанием линолевой кислоты, и соединением цис-4-гептеналь, который образуется в результате окисления (соединение это, кстати, используется в качестве пищевой отдушки). В результате образуется ряд летучих альдегидов, кетонов, спиртов и алкилфуранов. В работе авторы показали, что неприятному запаху, который образуется при длительном хранении картофельных хлопьев, последние обязаны продуктам разложения линолевой кислоты (образуются при расщеплении пероксо-комплексов линолевой кислоты), в частности гексаналю (который дает запах «свежескошенной травы»). В качестве ложки дегтя можно добавить, что неприятные запахи («прогорклости» и т.п.) также обязаны своим появленияем ненасыщенным жирным кислотам, которые легко окисляются при хранении (особенно обезвоженного картофеля и продуктов из него).

Поэтому внесу уточнение «за запах-в большей степени отвечают жиры, а за вкус — все остальное, что получается в результате „известной каждому повару“ реакции Майяра. Подозреваю, что комментаторы обязательно при упоминании про запах термически обработанного картофеля могут вспомнить про всевозможные пиразины, которые придают картофелю «тот самый вкус, знакомый с детства».

Примером такой реакции является жарка мяса или выпечка хлеба, в ходе которых в процессе нагревания пищевого продукта возникает типичный запах, цвет и вкус приготовленной пищи. Реакция Майяра (реакция сахароаминной конденсации) — химическая реакция между аминокислотами и сахарами, которая происходит при нагревании. Названа в честь французского химика и врача Луи Камиля Майяра, который одним из первых исследовал реакцию в 1910-х годах. Эти изменения вызваны образованием продуктов реакции Майяра.

Возможно, позднее придется остановится отдельно на процессе термической обработки картофеля и рассмотреть его химизм. Пока же скажу просто, что в формировании вкуса сваренной/жареной картошечки (и присущего ему аромата) принимают участие в основном различные алкилфураны (пиразины туда же), образующиеся в той самой реакции Майяра.

Так что, если „язык не идет к глутамату, глутамат идет к языку“, а ты, %USERNAME% об этом и не догадываешься 🙂 На заметку: интересный факт заключается в том, что продукты распада РНК — некоторые рибонуклеотиды, образующиеся в процессе запекания/жарки картофеля выступают как прекурсоры (предшественники) „глутамато-подобных“ усилителей вкуса, стимуляторов рецепторов класса „умами“.

Белок картофеля

Жиров — мало, белков — немного больше (в картофеле, естественно). Но все равно даже при огромном желании дотянуть до продуктов животного происхождения не получится. В среднем, один картофельный клубень содержит около 20 грамм белка (6,9-46,3) на килограмм сырого веса. А по данным USDA в мякоти одного вареного в мундире картофеля содержится примерно 1,87 грамма белка на 100 г продукта. Таким образом, белок, который может поступить в организм с картофелем — составляет мизерную часть к общему необходимому для организма дневному поступлению белка. Но, тем не менее, стоит признать, что даже с таким малым содержанием, корнеплоды (вроде картофеля и батата) являются ценным НЕзерновым источником белка в мировом масштабе. Кроме того, картофельный белок представляет определенную ценность из-за высокого содержания таких незаменимых кислот, как лизин, метионин, треонин и триптофан. Все же, так сказать, эндогенные белки, которые можно найти в картофеле, можно разделить на три класса: пататины, ингибиторы протеаз и высокомолекулярные белки. О каждом поподробнее ниже.

В основном он содержится в клубнях или столонах растения (в вакуолях паренхимы). Основным белком, содержащимся в картофеле, является пататин, также известный как туберин (как это получится в переводе на русский — »картофин" что ли...). Пататины — это гликопротеины запасного типа (т.е. На пататины приходится около 40–60% всех белков картофеля. белки, накопленные в ходе роста и развития плода как питательные вещества, необходимые для развития растения на начальных этапах прорастания), обладающие ферментативной активностью липидацил гидролазы (LAH, способная отщеплять жирные кислоты от мембранных липидов, но именно это, кстати, является основной причиной аллергии на картофель) и обладающие молекулярной массой от 40 до 45 кДа.

Состоит пататин примерно из 366 аминокислот, в картофеле присутствует в виде димера молекулярной массой около 88 кДа. Третичная структура у белка стабильна до 45 °С, при повышении температуры вторичная структура начинает разворачиваться и при 55 °C денатурирует α-спираль. Так что, возрадуйтесь, о поклонники и фанаты модного нынче СУ-ВИД течения, даже оно может избавить вас от картофельного белка.

Интересно, что по сравнению с другими распространенными белковыми растительными источниками пататин обладает такой же питательной эффективностью, что и яичный белок, и при этом имеет эмульгирующие свойства лучше, чем соевые белки (производители всевозможных вегетарианских суррогатов здесь должны остановиться и задуматься).

туберинин), которые имеют молекулярную массу в диапазоне от 5 до 25 кДа. Второй группой белков картофеля, являются ингибиторы протеаз (т.н. И да, это, если кто-то уже забыл, ни много ни мало, а антипитательные вещества. Как и пататин, ингибиторы протеазы составляют 30–40% от общего белка клубня. В целом, на сегодня выделено пять семейств этих ингибиторов (А — с массой до 8,1 кДа, В — с массой до 12,3 кДа, С — с массой 22–25 кДа, K, M) которые отличаются по своей аминокислотной последовательности, длине цепи и составу субъединицы (от мономера до пентамера). Ингибиторы протеазы блокируют работу сериновой, цистеиновой (ингибирует папаина = не есть сырой картофель с папайей), аспаргиновой протеазы (может ингибировать трипсин, химотрипсин и эластазу лейкоцитов человека, ага), некоторых инвертаз и металлсодержащих карбоксипепсидаз (PCI). "доменам Куница" (ударение на первый слог), которые, кстати, активно используются в качестве основы для разработки новых фармацевтических препаратов. 70% картофельных ингибиторов протеаз относятся к т.н. они так же уязвимы перед sous-vide). По сравнению с пататином ингибиторы протеаз, как правило, более гидрофильны, однако обе фракции белка имеют одинаковую тенденцию коагулировать под воздействием термической обработки (т.е. Еще раз напомню, что статус антипитательных веществ ингибиторы протеаз получили за то, что снижают усвояемость и биологическую ценность белка, что, правда, имеет место только в случае употребления сырых или неправильно приготовленных продуктов из картофеля.

Сюда относятся в основном высокомолекулярные белки, участвующие в синтезе крахмала, например, такие, как фосфорилаза L-1 с молекулярной массой 80 кДа (4%). Ну и наконец, третья, «NONAME», группа картофельных белков (20–30% от общего белка картофеля). Семейство это на сегодняшний день никто толком еще не изучал. Можно также вспомнить липоксигеназы (10%), дефенсин (5%), аннексин, глиоксилаза I, энолаза, каталаза, UDP-пирофосфорилаза и т.п. работа для вас). Так что белые пятна еще есть (белорусские картофельные эксперты, ау!

А интересно тем, что при ферментативной деградации многих из упомянутых полипептидов образуются короткоцепочные протеины, которые могут обладать гормоноподобной (антитромботической, антигипертензивной, иммуномодулирующей и т.д.) активностью. Итак, описание дано и стоит рассказать, а чем это все интересно. Биоактивностью обычно обладают пептиды с 3-20 аминокислотными остатками, способные проникать через кишечный эпителий или связываться со специфичными рецепторами эпителиальных клеток кишечника.

Исходя из аминокислотных последовательностях картофельных белков, исследователи предполагают наличие нескольких потенциальных «белков-прекурсоров» (предшественников), которые в организме человека формируют пептиды с различной активностью. На сегодняшний день, стоит признать, ни физиологическая роль, ни биологическая активность картофельных белков достаточно не изучена (читай ждет своих исследователей).

Лирика про картофельный геном и картофельный квас из Беларуси

Не знаю, многие ли в курсе, но геном картофеля уже расшифровали. И его даже можно скачать, записать на DVD-R и подарить бабушке, от которой осенью повезем пару-тройку мешков… Благо занимает он всего-то 844 Мб (это вам не геном пшеницы , размером около 15 Гб, причем всякие геномы гороха, земляники, какао, огурца, сои и т.д. и т.п. тоже не маленького размера). Наглядно это выглядит примерно так:

Картинка, кстати, из той самой, легендарной статьи в не менее легендарном Nature. Геном картофеля был отсеквенирован в 2011 году силами Международного консорциума по секвенированию картофеля. В состав этого коллектива входили 16 научных групп из разных стран, из России специалисты были, а вот были ли из «картофельной» Беларуси — не знаю, если комментаторы подскажут — поправлю статью.

Не столь важно, что уже в 2003 году исследователи из Корнеллского университета США встречали Новый год с фиолетовой картошкой сорта Adirondack Blue, сколь то, что из «Белорусского цветного» можно делать картофельный квас Miкола (Miкола — это Николай на русском, если что) (для Европейских игр 2019, ага). Но скорее всего, пока международное комьюнити секвенировано секвенировало, да не высеквенировало, наш брат «мытьем и катаньем» (=как завещал нам дедушка Мичурин) выводил себе селекционными методами "картофель с розовой, синей и фиолетовой мякотью".

В качестве примера биологической активности можно привести работу в которой показан эффект «картофина» приводящий к усиленному ингибированию ангиотензинпревращающего фермента (АПФ), ответственного за контроль артериального давления (и кучу других последствий различных заболеваний). Притом наибольшей активностью на этом поприще обладали белки из т.н. «сосудистого пучка» и внутренних клубней. Оказывал воздействие и возраст этих самых клубней (любители молодой картошечки, как ни крути, а правы в своих вкусовых предпочтениях).

Хотя, если уж говорить о снижении артериального давления, то стоит сказать о такой штуке как кукоамины (на картинке — кукоамин А)

В 2005 году британские исследователи обнаружили эти соединения в картофеле. Химически кукоамины являются катехинами (т.е. относятся к подмножеству антиоксидантов), а также производными диаминов дигидрокофейных кислот. Ранее подобные соединения были обнаружены в одном единственном растении Lycium chinense (Solanaceae) аka Дереза китайская

Если что, к этому же семейству относится и Дереза обыкновенная, плоды которой у нас принято еще называть «волчьей ягодой». Но системы здесь никакой нет, так что не вздумайте хватануть на досуге волчьих ягод, давление не понизит, несмотря на внешнюю схожесть (найди десять отличий с Lycium chinense)

Китайская дереза традиционно использовалась в фитомедицине, как средство эффективно снижающее артериальное давление. Аналогичными свойствами обладают и кукоамины картофеля. Правда стоит отметить, что в той же работе 2005 года есть ссылки на исследования, показавшие наличие кукоаминов в лесном табаке (Nicotiana sylvestris) и помидорчике (Lycopersicon esculentum). Пока роль кукоаминов в картофеле недостаточно изучена, существуют статьи, где авторы приписывают им регуляцию биосинтеза крахмала, формирование устойчивости к заболеваниям и стимуляцию прорастания. Что касается биологической активности в человеческом организме, то здесь еще предстоит оценить термическую устойчивость картофельных аминов (а на сегодня их обнаружено около 30 штук) и их биодоступность.

Исследователи обнаружили, что картофельные белки, в частности, ингибиторы аспаргиновой протеазы, стимулируют высвобождение в организме мышей холестистокинина (CCK) и стимулировал клетки, вырабатывающие CCKAR (англ. Вторым интересным фактом белковой природы могут служить работы (ать, два). Cholecystokinin A receptor), который, взаимодействуя с белками пищи, способствует возникновению эффекта насыщения.

Учитывая все вышесказанное, картофельные белки могут выступать в качестве прекрасного компонента для создания функциональной пищи (о ней я неоднократно упоминал в своих «банановых» статьях).

Исследователи в работе, к примеру обнаружили, что мелкие картофельные пептиды, полученные в результате щелочного ферментативного гидролиза, оказали положительное влияние на метаболизм липидов у крыс. Кроме того, картофель из-за огромного количества фактически дармовых полипептидов может выступать в качестве отличного in vitro нанореактора многих необходимых биологических соединений. В результате был сделан вывод, что такой способ получения низкомолекулярных пептидов является наиболее экономически доступным из существующих, с великолепными возможностями для промышленного масштабирования (не говоря уже про то, что низкомолекулярные пептиды обладают более широким спектром функциональных свойств, чем их высокомолекулярные «коллеги»). В результате этой работы, высокомолекулярные белки картофеля удалось «раздробить» на пептиды с молекулярной массой от 700 до 1840 Да, причем основная молекулярная масса (90% от общего количества) составляла 850 Да.

А к тому, что на сегодняшний день белок картофеля чаще всего стараются убрать при производстве крахмала и даже не всегда используют на корм животным (из-за горького вкуса, которым могут давать некоторые соединения, тот же соланин), также практически не используются белки картофеля для эмульгирования и пенообразования, хотя, думаю, каждый кто хоть раз варил картофель, знает насколько устойчивой бывает образующаяся при кипении пена. К чему это все? Единственный их минус в том, что все, самые интересные свойства, проявляются только при использовании as is, т.е. А выходит штука это интересная и достаточно не изученная. в необработанном виде… Химики-сыроеды, ваш ход!

Продолжение следует...

Besarab) Cергей Бесараб (Siarhei V.

Использованная литература

-H., Watanabe, S., Shimada, K-i., Sekikawa, M., Ohba, K., et al., 2008. Liyanage, R., Han, K. Bioscience, Biotechnology, and Biochemistry 943–950.
Pots, A. Potato and soy peptide diets modulate lipid metabolism in rats. v.; Lee, J. M.; Gruppen, H.; Diepenbeek, R. v. J. v.; Wijngaards, G.; Voragen, A. d.; Boekel, M. J. G. J. The effect of storage of whole potatoes of three cultivars on the patatin and
protease inhibitor content; a study using capillary electrophoresis and MALDI-TOF mass spectrometry. Food Agric. Sci. A., Walstra, P., Gruppen, H., Wijngaards, G., van Boekel, M. 1999, 79, 1557-1564.
van Koningsveld, G. G., (2002). A., Voragen, A. Journal of Agricultural and Food Chemistry 7651–7659.
Løkra, S., Helland, M. Formation and stability of foam made with various potato protein preparations. C., Straetkvern, K. H., Claussen, I. Chemical characterization and functional properties of a potato protein concentrate prepared by large-scale expanded bed adsorption chromatography. O., Egelandsdal, B., (2008). W., Davies, H. Swiss Society of Food Science and Technology 1089–1099.
Dobson, G., Griffiths, D. W. V., & McNicol, J. Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. (2004). Agric. J. A., Poll, L., & Larsen, L. Food Chem., 52, 6306–6314.
Petersen, M. (1998). M. Food Chem., 61, 461–466.
Oruna-Concha, M. Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC-MS. M. J., Bakker, J., & Ames, J. Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking. (2002). Sci. J. -L. Food Agric., 82, 1080–1087.
Laine, G., Göbel, C., du Jardin, P., Feussner, I., & Fauconnier, M. Study of precursors responsible for off-flavor formation during storage of potato flakes. (2006). Agric. J. B., Ekkehard Neuhaus, H., & Dörmann, P. Food Chem., 54, 5445–5452.
Klaus, D., Ohlrogge, J. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. (2004). W., Davies, H. Planta, 219, 389–396.
Dobson, G., Griffiths, D. W. V., & McNicol, J. Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. (2004). Agric. J. Tuber storage proteins. Food Chem., 52, 6306–6314.
Shewry PR (2003). Bot. Ann. and Korhonen, H. 91 (7): 755–69.
Pihlanto, A. T. J. Advances in Food and Nutrition Research 47, 175-276.
Pihlanto, A., Akkanen, S. (2003) Bioactive peptides and proteins. J. and Korhonen, H. Food Chemistry 109, 104-112.
Makinen, S., Kelloniemi, J., Pihlanto, A., Makinen, K., Korhonen, M., Hopia, A. (2008) ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). P. and Valkonen, J. (2008) Inhibition of angiotensin converting enzyme I caused by autolysis of potato proteins by enzymatic activities confined to different parts of the potato tuber. T. C., Lourbakos, A. Journal of Agricultural and Food Chemistry 56, 9875-9883.
Foltz, M., Ansems, P., Schwarz, J., Tasker, M. C. and Gerhardt, C. Journal of Agricultural and Food Chemistry 56, 837-843.
Parr, A. (2008) Protein hydrolysates induce CCK release from enteroendocrine cells and act as partial agonists of the CCK1 receptor. A., Colquhoun, I. J., Mellon, F. V. J., & Davies, H. Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. (2005). Agric. J. (2006). Food Chem., 53, 5461–5466.
Tanemura, Y., & Yoshino, M. Plant Physiol. Regulatory role of polyamine in the acid phosphatase from potato tubers. Putrescine N-ethyltransferase in Solanum tuberosumL., a calystegine-forming plant. Biochem., 44, 43–48.
Stenzel,O.,Teuber,M.,&Drager,B.(2006). (2005). Planta, 223, 200–212.
Matsuda, F., Morino, K., Ano, R., Kuzawa, M., Wakasa, K., & Miyagawa, H. Plant Cell Physiol., 46, 454–466.
Kaur-Sawhney, R., Shih, L. Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato tuber tissue. W. M., & Galston, A. Relation of Polyamine Biosynthesis to the Initiation of Sprouting in Potato Tubers. (1982). Plant Physiol., 69, 411–415.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть