Hi-Tech

Заменит ли искусственный интеллект доктора?

Где-то, например, в поисковых сервисах или рекомендательных системах интернет-магазинов, их присутствие стало для нас незаметным. Системы искусственного интеллекта (ИИ) и технологии машинного обучения постепенно проникают во все сферы нашей жизни. Где-то, скажем, в области беспилотных автомобилей, мы ждем, пока технология выйдет из R&D-центров и «попадет» на дороги.

Первые попытки внедрить искусственный интеллект в медицинские системы предпринимались еще 40 лет назад, но по-настоящему массовым этот процесс стал недавно. Не исключение и одна из самых консервативных сфер — медицина.

В медицине это особенно актуально, так как решения, принимаемые машиной, могут повлиять на жизнь и здоровье людей. Внедрение любых новых технологий всегда вызывает много вопросов и шквал критики со стороны консерваторов. Чтобы внести ясность в эту область, далее я отвечу на ряд популярных вопросов о применении систем искусственного интеллекта в медицине.

Что могут системы ИИ в медицине

Под влиянием массовой культуры, люди, не знакомые с этой областью науки, считают, что ИИ — это суперсложный и умный компьютер, способный мыслить как человек и решать любые задачи, в том числе творческие. Термин «искусственный интеллект» зачастую понимается людьми не совсем корректно. При этом нет 100% гарантии, что он действительно будет когда-либо создан. Для описания такого искусственного интеллекта обычно использую термин «сильный ИИ», но пока он существует лишь в фантастических фильмах и книгах.

Поэтому обычно под «искусственным интеллектом» подразумевают «слабый ИИ» — алгоритм который не имеет «разума», но решает одну узкоспециализированную задачу, например, находит котиков на картинках или предсказывает изменение курса акций.

Но самой науке уже десятки лет, и в разные годы популярность приобретали различные синонимы ИИ: машинное обучение (Machine Learning), интеллектуальный анализ данных (Data Mining), наука о данных (Data Science), но по сути, все эти термины взаимозаменяемы и обозначают одну область. Термин искусственный интеллект стал часто «мелькать» в научных статьях и в прессе несколько лет назад.

Популярный пример — задача классификации: есть обучающая выборка, для которой известны входные (например, КТ снимок легких человека) и выходные данные (информация, есть ли у человека рак легких), на основании этих пар система должна определять наличие известной информации на ранее неизвестных ей снимках. На практике задачи машинного обучения обычно сводятся к автоматическому нахождению неизвестных и неочевидных зависимостей в данных.

Именно в этом и заключается его «интеллектуальность». Разработчик не задает правила поиска рака на снимках, он задает правила обучения системы, а критерии наличия раковой опухоли алгоритм формирует для себя сам.

В медицине машинное обучение чаще всего применяется для: Машинное обучение может показывать хорошие результаты на любых задачах с большим объемом структурированных (или хотя бы структурируемых) данных.

  • Распознавания изображений (КТ, рентген, МРТ, снимки сетчатки, фотографии кожи). Например, в этой области работает стартап Behold.ai. Решение компании определяет заболевания легких на рентгеновских снимках с вероятностью, близкой к 85%.
  • Оценки риска осложнений заболеваний. Компания RxPREDiCT использует машинное обучение для определения «групп риска» среди больных. RxPREDiCT предоставляет специальные инструменты, которые учитывают заболевания пациентов и помогают людям поддерживать здоровый образ жизни. Например, система подбирает индивидуальную диету и отслеживает потребляемые калории.
  • Предпервичной медицнинской помощи и маршрутизации пациентов. Различные симптом-чекеры на базе ИИ (например, ADA, Babylon, Your.MD, WebMD и др.) анализируют жалобы пациента, дают ему информацию о возможных заболеваниях и при необходимости направляют к нужному специалисту. Точность постановки диагноза по одним только жалобам далека от 100%, и в большинстве случаев система так или иначе направляет пациента к доктору, однако такие решения покрывают широкий спектр «популярных» заболеваний, выявляют осложнения ОРВИ, борются с «самолечением» и существенно снижают нагрузку на врачей первичного звена.
  • Помощи в постановке диагнозов и назначении лечения. Решения Bay Labs, в основе которых лежат системы искусственного интеллекта, позволяют врачам быстро оценить эхокардиограмму пациента и получить важную информацию о состоянии его сердца: размеры, форму, объемы перекачиваемой крови, а также определить повреждение тканей.
  • Оценки качества медицинской помощи. Например, мы в DOC+ используем систему на базе машинного обучения, которая оценивает качество заполнения электронных медицинских карт врачами, правильность постановки диагноза и назначения лечения. Это помогает поддерживать стандарты лечения, основанные на доказательной медицине, и «вооружать» ими всех наших врачей.
  • Анализа данных носимых устройств и медицинских девайсов. Американская компания PhysIQ создает продукт VitaLink для мониторинга состояния тяжелобольных пациентов. Платформа фиксирует показатели здоровья: частоту сердцебиения, активность, дыхание. Все эти измерения производятся с помощью носимых устройств в домашних условиях.

Заменит ли искусственный интеллект доктора

Однако в отдельных задачах точность постановки диагноза алгоритмом уже превышает человеческую, а это значит, что роль врачей в этих сферах может измениться. Пока что речи о замене врачей «роботами» не идет, наоборот, все новые технологии призваны помогать докторам: повышать качество их работы и эффективность за счет умных подсказок и автоматизации рутинных процедур.

Квалифицированный специалист определяет патологию в 73% случаев. В Google разработали алгоритм, который способен выявлять рак груди c точностью 89%. Модель учитывает анализы костного мозга и истории болезни, сравнивая показатели с результатами анализов здоровых людей. А ученые из Университета Индианы-Пердью Индианаполис (IUPUI) создали алгоритм машинного обучения, способный предсказывать ремиссию лейкемии у пациентов с вероятностью в 100%.

Несмотря на высокую точность работы некоторых алгоритмов, у ИИ есть и слабые стороны в сравнении с живым доктором.

Из-за этого ИИ не сможет на 100% заменить доктора на этапе диагностики, но сможет помочь решать узкоспециализированные задачи, о которых в отсутствии автоматизации раньше даже не задумывались. Во-первых, алгоритм может находить только те болезни, на которых он обучался, тогда как врач может выявить более широкий спектр заболеваний.

По такому принципу работает ИИ-платформа, которую тестируют ученые из медицинского центра Университета Виргинии. Например, можно «прогнать» через узкоспециализированный алгоритм все старые снимки из архива больницы и выявить заболевания, которые были пропущены изначально (грубо говоря, при подозрении на пневмонию доктор не всегда будет искать на КТ рак). Она способна по рентгеновскому снимку определить кальциноз коронарных артерий, эмфизему легких, стеатоз печени и компрессионный перелом позвоночника — и учитывает нюансы (например, снижение плотности костной ткани на ранней стадии), которые рентгенологи могут пропустить.

Дополнительной диагностикой (в случае с раком, например, финальный диагноз после выявления заболевания на снимке ставит не рентгенолог, а онколог или патолог, изучающий результаты биопсии) и лечением пациентов с учетом мнения ИИ занимаются реальные врачи. Во-вторых, работа ИИ заканчивается после того, как он поставил диагноз.

В любом случае внедрение новых технологий будет проходить поэтапно. Говорить о замене врача алгоритмом еще слишком рано, так как области применения ИИ покрывают очень маленькую часть работы врача. Параллельно будут появляться медицинские сервисы на базе ИИ, напрямую доступные пациентам. Сначала будут автоматизироваться все рутинные операции, затем – самые сложные направления, требующие значительной врачебной экспертизы и больших вычислительных мощностей. Безусловно все эти изменения окажут влияние на процессы в медицине и на роль, которую играет в них врач, но о замене доктора «роботом» говорить еще очень рано.

Что препятствует внедрению ИИ в медицине

Несмотря на огромный потенциал технологий машинного обучения, на пути их внедрения стоит ряд проблем:

  • Высокие риски. В отличие от большинства других сфер, медицина имеет дело с жизнями и здоровьем людей, поэтому требования к качеству и точности алгоритмов невероятно высоки. Системы, влияющие на принятие врачебных решений, должны быть очень точными и проходить долгий процесс тестирования под надзором реальных врачей, перед тем как будут отпущены в «свободное плавание».
  • Законодательство. Законодательство в сфере медицины крайне консервативное, применение в лечебном процессе любых технологий требует долгой и сложной сертификации. Например, в России медицинское ПО во многих случаях необходимо регистрировать как медиздели
  • Наличие структурированных и размеченных данных. В эту проблему упираются многие задачи машинного обучения. Большинство данных в медицине не структурировано, не оцифровано и плохо размечено. Более того, медицина не точная наука, поэтому данные, полученные от разных медицинских школ, могут быть противоречивыми. Однако отмечу, что в этом направлении ситуация постепенно меняется, клиники автоматизируются, внедряются международные стандарты хранения медданных.
  • Интерпретируемость. Особенностью многих алгоритмов машинного обучения является сложность интерпретируемости их результата. Для большинства приложений это не имеет значения, так как если система работает и показывает хорошие результаты, то обычно никого не волнует, как она пришла к тем или иным выводам. Но в медицине зачастую важно понимание процесса принятия решения.Например, если система поддержки принятия решений (clinical decision support, CDS) советует доктору назначить пациенту определенное лекарство, врачу нужно видеть всю картину. Он должен понимать, почему машина дает такой совет, что она учитывает: диагноз, симптомы, аллергии, другие противопоказания и т. п. Если алгоритм распознает рак легких на снимках, то он должен не просто сказать о его наличии, но показать его локализацию, указать на ключевые признаки заболевания.
  • Скепсис медицинского сообщества. Так как результаты работы алгоритмов машинного обучения сложно интерпретировать, практика их применения не очень широкая, а перспектива лечения алгоритмом пугает многих людей, технологии ИИ в медицине воспринимают с солидной долей скептицизма. По этой причине они до сих пор не получили достаточный кредит доверия.

Однако внедрение систем, упрощающих рутинные операционные процессы внутри клиник, или систем поддержки принятия решений, в которых последнее слово остается за врачом, идет полным ходом. Эти проблемы замедляют внедрение технологий ИИ в процесс постановки диагноза и назначения лечения.

Он анализирует снимки МРТ и подсчитывает объём крови в сердце пациента. Например, управление США по санитарному надзору уже официально утвердило как минимум один алгоритм машинного обучения от компании-разработчика аналитических решений Arterys. Система обрабатывает информацию за 30 секунд, в то время как классические методы справляются за час.

Нужно ли докторам разбираться во всем этом

Врачам будет важно понимать общие принципы работы системы, особенно с точки зрения пользователя. Нужно, но не во всем. Здесь все как с работой на ПК: уметь работать с компьютером просто необходимо, а вот уметь программировать при этом необязательно. Доктору не надо уметь разрабатывать алгоритмы машинного обучения самостоятельно, но нужно иметь понимание того, что такое ИИ и как он работает.

Медицина — одна из сфер, где он принесет ощутимую пользу. Искусственный интеллект — очень популярное направление, которое способно коренным образом изменить качество жизни людей. Системы ИИ в медицине не заменят врачей (и вряд ли в ближайшие годы нас будут лечить роботы), но они могут повысить качество и эффективность их работы. Но сейчас мы делаем лишь первые шаги на пути внедрения новых технологий в этой области.

В конце концов, именно он позволит сделать медицину действительно персонализированной и предиктивной и поднять ее на новый уровень. Не стоит бояться или сопротивляться этому процессу.

#телемедицина #будущее #искусственныйинтеллект

Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть