Главная » Хабрахабр » Внутренности SDR чипа AD9361 — когда микроэлектроника выгоднее наркоторговли

Внутренности SDR чипа AD9361 — когда микроэлектроника выгоднее наркоторговли

Когда в 2013 году Analog Devices выпустила SDR трансивер AD9361 — случилась настоящая революция в цифровой радиосвязи. SDR были и раньше, но теперь в одном чипе можно было получить все: 2 канала на прием и 2 на передачу (с набортными 12-бит ЦАП и АЦП) с шириной канала до 56МГц, локальные генераторы и радиотракт — для работы в диапазоне от 70 (на передачу от 47) до 6000Мгц. На AD9361 «из коробки» можно реализовать почти любой цифровой приемопередатчик, за исключением наверное только UWB и начинающего набирать популярность диапазона 60ГГц (но там без аппаратной многоэлементной ФАР все равно делать почти нечего). Остается лишь добавить источник/приемник данных (пока это обычно FPGA), внешние фильтры и LNA/PA, если задача того требует.

Мне наконец удалось посмотреть, что у него внутри, и — попробовать взглянуть на финансовую сторону производства действительно инновационной микроэлектроники с высокой добавленной стоимостью.

После вскрытия — видим чип размером 4336x4730 µm, забегая вперед — нормы производства 65нм. В глаза бросаются только катушки от PLL (справа сверху и слева по середине) и — то что маски были выпущены в 2011 году, а в продажу чип вышел — только в конце 2013. По клику — полное разрешение (72Мб):

После стравливания почти всех слоев металлических соединений — видно, что подавляющую часть микросхемы занимают аналоговые блоки:

В максимальном увеличении — видим ряды стандартных ячеек. Справа внизу — цифровой фарш. PFET транзисторы чуть шире (как и всегда в кремниевых CMOS процессах). Ячейки стоят, как и почти у всех, — «спина к спине», [PFET NFET] [NFET PFET] и таким образом используют общие вертикальные линии VCC и GND (питание конечно подается от верхних уровней металла, которые тут уже не видно). Масштаб после клика на полном разрешении на этой фотографии и далее — 24. Ширина ячеек — 1,83мкм, что примерно похоже на правду для 65нм микросхемы. 5нм на пиксель.

Однако доступа к ним после завершения производства всех уровней металлизации финального чипа нет — на верхних металлах подключаться некуда, а сложной цифровой схемы аля JTAG рядом также не видно: По всей площади кристалла разбросаны блочки, которые вероятно используются для проверки разброса характеристик транзисторов по площади кристалла, на начальном этапе разбраковки или даже отработки техпроцесса.

Массивы конденсаторов — ключевой элемент реализации ЦАП/АЦП, критически важной является идентичность конденсаторов в массиве, тут по краям — похоже дополнительные элементы-пустышки, чтобы краевые эффекты фотолитографии не оказывали влияния на размеры/емкость.

Единственная регулярная цифровая структура — на этом кадре слева, но по топологии на SRAM не похоже. Ни одного массива SRAM на чипе не нашел. Тут без электронного микроскопа не разобраться. Вообще ни на что не похоже.

Весь аналоговый фарш — преимущественно на полевых транзисторах:

Еще немного цифрового фарша

Ну и заглавная фотография — все что осталось от индуктивности PLL (с не до конца дотравленным металлом и стеклом — что дает такие цвета). PLL тут самая ответственная часть. Если шумы или недостаточную линейность аналогового тракта еще можно обходить внешним обвесом и цифровой обработкой, то фазовые шумы PLL — задают абсолютный и непреодолимый предел качества радиосвязи:

На примере этого чипа можно примерно посчитать, как с высоты птичьего полета и в первом приближении выглядят выглядит финансовая сторона действительно высокотехнологичного продукта, к счастью ежегодная финансовая отчетность Analog Devices публична, а себестоимость мы теперь оценить сможем. К точности таких грубых оценок всегда есть где придраться, но тут главное — общий принцип (в детали углубляться можно бесконечно, начиная с корпусировки и тестирования...):

Таким образом, с одной пластины получаем 3077 микросхем, при выходе годных 50% — остается 1538 штук. Площадь микросхемы ~ 21,12мм², полезная площадь кремниевой пластины диаметром 300мм (а на 65нм только такие) — примерно 65'000 мм². 04$. При цене пластины 1600$ (технология-то уже старая) — себестоимость каждого годного кристалла — 1.

Если оценить общий объем производства в 1000 пластин (а в реальности может быть и больше) — NRE на каждый чип добавит 0. NRE (Non recurring engineering) — маски (2 комплекта по 400тыс$) и оснастка — допустим 1млн$ суммарно. 64$.

Розничная цена на AD9361 у дистрибьюторов — 275$, оптом у производителя — 175$.

Даже вертикально-интегрированные наркокартели не могут похвастаться такими показателями! У Analog Devices на 1,68$ себестоимости — получается 173,32$ добавленной стоимости! 5 порядка выше получается. Intel например также не может похвастаться такой добавленной стоимостью — себестоимость там на 1.

Поэтому часть выручки — мы направляем на дальнейшие исследования и разработки, чтобы в будущем выпустить новые, более совершенные, продукты. Но тут конечно есть очевидная проблема — нельзя просто так взять и сделать интегрированый SDR трансивер: нужны патенты, позволяющие вести работу и наработанные годами (обобщенно — интеллектуальная собственность) — и собственно саму микросхему нужно разработать.

061 млрд$. Из отчета Analog Devices за 2017 год видим, что при выручке 5,1млрд$ — расходы на R&D составили 968млн$, и прибыль до налогов — 3. Безусловно, в разных продуктах все по разному, но в среднем получится где-то так: В такой пропорции выручку и разделим.

  1. Все эти разговоры о том есть в России 65 / 28 / 14нм микроэлектронные заводы или нет — это кусок пирога, который на диаграмме по данному конкретному продукту почти не видно. Разработка — требует на 1.5 порядка больше ресурсов, чем непосредственно серийное производство. Поэтому говорить о производстве, не вкладывая на 1.5 порядка больше в разработку — это просто самообман. Основные деньги делаются не на производстве.
  2. Этот тоненький производственный кусочек пирога — это даже не прибыль производства, а выручка. Там такое же внутреннее деление: по старым технологиям, на рыночных условиях — 90% себестоимость (преимущественно импорт) и обслуживание кредитов, 10% прибыль. Т.е. непосредственно микроэлектронный завод тут хорошо если получит 0.25$ прибыли на производстве этого чипа. Только на самых свежих технологиях (доступных единицам в мире), где конкуренция ограничена — прибыль может быть существенно выше.
  3. Любой высокотехнологичный продукт — требует максимального увеличения объема продаж (в штуках). Не отмахивайтесь, как от очевидной вещи. Это означает, что продавать только в одну страну нельзя — продукция должна уходить на весь мир, иначе она не будет конкурентоспособной. При такой низкой себестоимости производства — связь конечной цены изделия и объемов продаж — линейная. Если продаем только в Россию (которая, предположим, в электронике составляет 2% мировой) — значит вынуждены продавать в первом приближении в 50 раз дороже.
  4. Продажи обеспечивает не только размазывание себестоимости разработки, но и «другие расходы», сравнимые собственно с разработкой, куда включены все эти непонятные русской душе бесплатные семплы для бедных студентов (которые прямо сейчас ничего не купят), реклама, конференциии, выставки и конкурсы, и многое другое.
  5. Если нет уникальных IP/разработок, или все это куплено/лицензировано уже готовое (как это старается делать Роснано по концепции чистого капитализма) — то довольствоваться придется крошечными долями пирога и скромными нормами прибыли (или самообманом). «Рутинные» микроэлектронные продукты например продаются по цене «всего» 5-10x себестоимости.

Таким образом — мало построить условный 14нм завод за 10 млрд $. Нужно в ~15 раз больше потратить на разработку продукции для него. А затем — еще столько же на продвижение и поддержку, чтобы продукт продавался по всему миру. А значит работы впереди еще много.

А если вы хотите больше вскрытых микросхем — можно даже поддержать проект на Patreon. Посмотреть больше фотографий микросхем — можно на zeptobars.com (RSS).


Оставить комментарий

Ваш email нигде не будет показан
Обязательные для заполнения поля помечены *

*

x

Ещё Hi-Tech Интересное!

Фиаско. История одной самоделки IoT

Большинство статей пишется по принципу «Я/мы это сделал/и, глядите как круто!». Эта же публикация посвящается провальному проекту. Добро пожаловать под кат… Это продолжение моей публикации Разработка умных устройств на примере контроллера теплого пола на ESP8266 Планировка — евротрешка, коридор, кухня-гостиная ...

Хакер Алексей, который защищает маршрутизаторы MikroTik без разрешения владельцев, стал знаменитым

маршрутизаторов MikroTik по всему миру (в том числе 40 тыс. На Хабре подробно рассказывали про уязвимость CVE-2018-14847, которой подвержены около 370 тыс. Если вкратце, уязвимость в MikroTik RouterOS позволяет без особой авторизации прочитать удалённо любой файл с роутера, включая плохо ...