Железо

Видео: учёные из MIT сделали автопилот более похожим на человека

Intel Mobileye предлагает математическую модель Responsibility-Sensitive Safety (RSS), она описывается компанией как подход, основанный на «здравом смысле», который характеризуется на программировании автопилота на «хорошее» поведение, например такое, как предоставление другим автомобилям права проезда. Создание автомобилей с автопилотом, способным к принятию решений подобно человеку, является давней задачей таких компаний, как Waymo, GM Cruise, Uber и других. Теперь к данным исследованиям подключилась группа ученых из Массачусетского технологического института (MIT), которые предложили новый подход, основанный на использовании GPS-подобных карт и визуальных данных, получаемых с камер, установленных на автомобиле, чтобы автопилот мог ориентироваться на неизвестных ему дорогах похожим на человека образом. С другой стороны, NVIDIA активно разрабатывает Safety Force Field, технологию принятия решений на базе системы, которая отслеживает небезопасные действия окружающих участников движения, анализируя данные с датчиков автомобиля в режиме реального времени.

исследователи MIT создали систему, которая позволяет автомобилям без водителя проверять простую карту и использовать визуальные данные для следования по маршрутам в новых сложных условиях.

Исследователи MIT создали систему, которая позволяет автопилоту без участия водителя проверять простую карту на правильность информации и использовать визуальные данные для следования по маршруту в сложных и неизвестных условиях

Мы просто сопоставляем то, что видим вокруг нас, с тем, что видим на наших навигаторах, чтобы определить, где мы находимся и куда нам нужно ехать. Люди исключительно хороши в управлении автомобилями на дорогах, на которых они раньше никогда не бывали. Для каждой новой локации автопилоту требуется тщательно проанализировать новый маршрут, при этом часто автоматические системы управления полагаются в этом вопросе на сложные 3D-карты, которые заранее готовят для них поставщики. Автомобилям с автопилотом, с другой стороны, крайне сложно ориентироваться на неизвестных участках дороги.

Затем обученный автопилот может управлять автомобилем без водителя в совершенно новой локации, имитируя вождение человека. В докладе, представленном на этой неделе на Международной конференции по робототехнике и автоматизации, исследователи Массачусетского технологического института описывают автономную систему управления, которая «изучает» и запоминает модель принятия решений водителем-человеком при движении по дорогам в небольшом районе города, используя для этого только данные с видеокамер и простую GPS-подобную карту.

Это помогает системе определить, является ли её положение на дороге, работа датчиков или карта неправильными, чтобы скорректировать курс автомобиля. Как и человек, автопилот также обнаруживает любые несоответствия между своей картой и особенностями дороги.

Затем система успешно управляла автомобилем на заранее спланированном маршруте в другой лесной зоне, предназначенной для испытаний автономных транспортных средств. Для первоначального обучения системы оператор-человек управлял автоматизированной Toyota Prius, оснащённой несколькими камерами и базовой системой GPS-навигации, для сбора данных с местных пригородных улиц, включая различные дорожные конструкции и препятствия.

«Вы можете скачать новую карту для автомобиля, чтобы перемещаться по дорогам, которые он никогда не видел раньше». «С нашей системой вам не нужно заранее тренироваться на каждой дороге», — говорит автор исследования Александр Амини (Alexander Amini), аспирант MIT.

«Например, если мы обучаем автономное транспортное средство вождению в городских условиях, таких как улицы Кембриджа, система также должна иметь возможность плавного движения в лесу, даже если такого окружения она еще никогда не видела». «Наша цель — создать автономную навигацию, устойчивую к вождению в новых условиях», — добавляет соавтор научной работы Даниела Рус (Daniela Rus), директор Лаборатории компьютерных наук и искусственного интеллекта (CSAIL).

В течение многих лет группа Даниелы разрабатывала «сквозные» навигационные системы, которые обрабатывают сенсорные данные и управляют автомобилем без необходимости использования каких-либо специализированных модулей. Традиционные навигационные системы обрабатывают данные от датчиков через несколько модулей, настроенных для таких задач, как локализация, картографирование, обнаружение объектов, планирование движения и управление рулем. В новой работе исследователи усовершенствовали свою сквозную систему для движения от цели к месту назначения в ранее неизвестной среде. До сих пор, однако, эти модели использовались строго для безопасного следования по дороге, без какого-либо реального предназначения. Для этого учёные обучили свой автопилот прогнозировать полное распределение вероятностей по всем возможным командам управления в любой момент во время вождения.

Во время обучения система наблюдает за вождением водителя-человека. Система использует модель машинного обучения, называемую свёрточной нейронной сетью (convolutional neural network — CNN), обычно используемой для распознавания изображений. В итоге система запоминает наиболее вероятные команды рулевого управления для различных дорожных ситуаций, таких как прямая дорога, перекрёстки с четырехсторонним движением или Т-образные перекрёстки, развилки и повороты. CNN коррелирует повороты рулевого колеса с кривизной дороги, которую она наблюдает через камеры и на своей небольшой карте.

«Модель начинает с размышления обо всех этих направлениях, поскольку CNN получает всё больше и больше данных о том, что делают в тех или иных ситуациях на дороге люди, она увидит, что некоторые водители поворачивают налево, а другие поворачивают направо, но никто не едет прямо. «Первоначально на Т-образном перекрестке есть много разных направлений, куда автомобиль может повернуть», — говорит Рус. Прямое движение исключено как возможное направление, и модель делает вывод, что на Т-образных перекрёстках она может двигаться только влево или вправо».

Например, она идентифицирует красный дорожный указатель «Stop» или разрыв линии на обочине дороги как признаки предстоящего перекрестка. Во время вождения CNN также извлекает из камер визуальные особенности дороги, что позволяет ей прогнозировать возможные изменения маршрута. В каждый момент она использует прогнозируемое распределение вероятностей команд управления, чтобы выбрать наиболее правильную команду.

Автономные системы управления обычно используют карты созданные при помощи лидаров, которые занимают примерно 4000 Гбайт данных для хранения только города Сан-Франциско. Важно отметить, что, по словам исследователей, их автопилот использует карты, которые крайне легко хранить и обрабатывать. С другой стороны, карта, используемая новым автопилотом, охватывает весь мир, занимая при этом всего 40 гигабайт данных. Для каждого нового пункта назначения автомобиль должен использовать и создавать новые карты, что требует огромное количество памяти.

Это помогает автономному транспортному средству лучше определить, где оно находится на дороге. Во время автономного вождения система также постоянно сопоставляет свои визуальные данные с данными карты и отмечает любые несоответствия. И это гарантирует, что автомобиль остается на самом безопасном пути, даже если он получает противоречивую входную информацию: если, скажем, автомобиль движется по прямой дороге без поворотов, а GPS указывает, что автомобиль должен повернуть направо, автомобиль будет знать, что нужно ехать прямо или остановиться.

«Мы хотим убедиться, что наш автопилот устойчив к различным отказам датчиков, создав систему, которая может принимать любые шумовые сигналы и при этом правильно ориентироваться на дороге». «В реальном мире датчики выходят из строя», — говорит Амини.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть