cnn

  • ХабрахабрФото [Перевод] Временные сверточные сети – революция в мире временных рядов

    [Перевод] Временные сверточные сети – революция в мире временных рядов

    Перевод статьи подготовлен в преддверии старта курса «Deep Learning. Basic».В этой статье мы поговорим о последних инновационных решениях на основе TCN. Для начала на примере детектора движения рассмотрим архитектуру временных сверточных сетей (Temporal Convolutional Network) и их преимущества перед традиционными подходами, такими как сверточные нейронные сети (CNN) и рекуррентные нейронные сети (RNN). Затем поговорим о последних примерах применения TCN, включая…

    Читать далее »
  • ХабрахабрФото [Перевод] Как я научила свой компьютер играть в Доббль с помощью OpenCV и Deep Learning

    [Перевод] Как я научила свой компьютер играть в Доббль с помощью OpenCV и Deep Learning

    Привет, дорогие подписчики! Наверное вы уже знаете о том, что мы запустили новый курс «Компьютерное зрение», занятия по которому стартуют уже в ближайшие дни. В преддверии старта занятий подготовили еще один интересный перевод для погружения в мир CV. Мое хобби – играть в настольные игры, и поскольку я немного знакома со сверточными нейронными сетями, я решила создать приложение, которое может…

    Читать далее »
  • ХабрахабрФото Настройка функции потерь для нейронной сети на данных сейсморазведки

    Настройка функции потерь для нейронной сети на данных сейсморазведки

    В прошлой статье мы описали эксперимент по определению минимального объема вручную размеченных срезов для обучения нейронной сети на данных сейсморазведки. Сегодня мы продолжаем эту тему, выбирая наиболее подходящую функцию потерь. Рассмотрены 2 базовых класса функций – Binary cross entropy и Intersection over Union – в 6-ти вариантах с подбором параметров, а также комбинации функций разных классов. Дополнительно рассмотрена регуляризация функции…

    Читать далее »
  • ХабрахабрФото Эксперименты с нейронными сетями на данных сейсморазведки

    Эксперименты с нейронными сетями на данных сейсморазведки

    Сложность интерпретации данных сейсмической разведки связана с тем, что к каждой задаче необходимо искать индивидуальный подход, поскольку каждый набор таких данных уникален. Ручная обработка требует значительных трудозатрат, а результат часто содержит ошибки, связанные с человеческим фактором. Использование нейронных сетей для интерпретации может существенно сократить ручной труд, но уникальность данных накладывает ограничения на автоматизацию этой работы. Проведение акваториальной сейсморазведки (источник) Данная…

    Читать далее »
  • ХабрахабрФото Джедайская техника уменьшения сверточных сетей — pruning

    Джедайская техника уменьшения сверточных сетей — pruning

    Приоритет — скорость работы при приемлемой точности. Перед тобой снова задача детектирования объектов. Точность(mAp75) больше 0. Берешь архитектуру YOLOv3 и дообучаешь. Но скорость прогона всё еще низкая. 95. Черт. А под катом рассмотрим Model Pruning — обрезание избыточных частей сети для ускорения Inference без потери точности. Сегодня обойдём стороной квантизацию. Разберем, как сделать это вручную и где можно автоматизировать. Наглядно…

    Читать далее »
  • ХабрахабрФото 7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х

    7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х

    Мне не давала покоя и лишала сна простая мысль: «Как можно ретроспективно прикинуть скорость развития нейросетей?» Ибо «Тот, кто знает прошлое — тот знает и будущее». Новый год все ближе, скоро закончатся 2010-е годы, подарившие миру нашумевший ренессанс нейросетей. Как вообще можно оценить скорость прогресса в этой области и прикинуть скорость прогресса в следующем десятилетии?  Как быстро «взлетали» разные алгоритмы?…

    Читать далее »
  • ХабрахабрФото Ищем пневмонию на рентгеновских снимках с Fast.ai

    Ищем пневмонию на рентгеновских снимках с Fast.ai

    Наткнулся на статью в блоге компании Школа Данных и решил проверить, на что способна библиотека Fast.ai на том же датасете, который упоминается в статье. Здесь вы не найдете рассуждений о том, своевременно и правильно диагностировать пневмонию, будут ли нужны врачи-рентгенологи, можно ли считать предсказание нейронной сети медицинским диагнозом и т.д. Основная цель — показать, что машинное обучение в современных библиотеках…

    Читать далее »
  • ХабрахабрФото Python + OpenCV + Keras: делаем распознавалку текста за полчаса

    Python + OpenCV + Keras: делаем распознавалку текста за полчаса

    Привет Хабр. Как оказалось, есть, и называется такая база, как можно догадаться, Extended MNIST (EMNIST). После экспериментов с многим известной базой из 60000 рукописных цифр MNIST возник логичный вопрос, есть ли что-то похожее, но с поддержкой не только цифр, но и букв. Если кому интересно, как с помощью этой базы можно сделать несложную распознавалку текста, добро пожаловать под кат. Делать…

    Читать далее »
  • ХабрахабрФото Погружение в свёрточные нейронные сети. Часть 5 / 1 — 9

    Погружение в свёрточные нейронные сети. Часть 5 / 1 — 9

    Полный курс на русском языке можно найти по этой ссылке.Оригинальный курс на английском доступен по этой ссылке. Выход новых лекций запланирован каждые 2-3 дня. Интервью с Себастьяном Труном Введение Набор данных собак и кошек Изображения различного размера Цветные изображения. Часть 1 Цветные изображения. Часть 2 Операция свёртки на цветных изображениях Операция подвыборки по максимальному значению на цветных изображениях CoLab: кошки…

    Читать далее »
  • ХабрахабрФото Введение в свёрточные нейронные сети (Convolutional Neural Networks)

    Введение в свёрточные нейронные сети (Convolutional Neural Networks)

    Полный курс на русском языке можно найти по этой ссылке. Оригинальный курс на английском доступен по этой ссылке. Выход новых лекций запланирован каждые 2-3 дня. Интервью с Себастьяном — Итак, мы снова с Себастьяном в третьей части этого курса. Себастьян, я знаю, что вы проводили много разработок с использованием свёрточных нейронных сетей. Можете нам рассказать чуточку больше об этих сетях…

    Читать далее »


Кнопка «Наверх»