Hi-Tech

Сверхпроводники, работающие при комнатной температуре, приведут нас к удивительным технологиям

Не поддающиеся логическому обсуждению квантово-механические эффекты приводят к тому, что у сверхпроводников ниже критической температуры совершенно исчезает электрическое сопротивление. Сверхпроводники можно назвать одними из самых интересных и удивительных материалов в природе. Ток, который может течь постоянно, не теряя никакой энергии, означает передачу энергии практически без потери в кабелях. Одного этого свойства достаточно, чтобы зажечь воображение. Когда возобновляемые источники энергии начнут доминировать в сети и высоковольтные передачи через континенты станут непрерывными, кабели без потерь приведут к значительной экономии.

В отличие от батарей, которые со временем ухудшаются, если сопротивление будет действительно нулевым, можно будет найти сверхпроводник через миллиард лет и обнаружить, что в нем течет все тот же старый ток. Более того, сверхпроводящий провод, переносящий ток без потерь, станет отличным хранилищем электроэнергии. Энергию можно было бы хранить неограниченно долго!

В отсутствие сопротивления через сверхпроводящий провод можно было бы пропускать мощный ток и получать магнитные поля невероятной мощности.

Можно было бы использовать на электростанциях, заменяя обычные методы, которые вращают турбину в магнитных поля для генерации электричества, и в квантовых компьютерах, в которых нули и единицы (обычные биты) заменяются текущим по часовой или против часовой стрелки током в сверхпроводнике. Их можно было бы использовать для левитирующих поездов и невероятного разгона, преобразовав всю транспортную систему.

Почему же они до сих пор не изменили наш мир? Артур Кларк однажды сказал, что достаточно развитая технология будет неотличима от магии; сверхпроводники определенно похожи на волшебные устройства. Проблема в критической температуре.

У сверхпроводников также есть критическое магнитное поле; за пределами магнитного поля определенной силы они перестают работать. Для большинства известных таких материалов критическая температура — это сотни градусов ниже точки замерзания. Так вышло, что материалы с внутренней высокой критической температурой зачастую предлагают и самые мощные магнитные поля при охлаждении значительно ниже этой температуры.

Это значит, что применение сверхпроводников до сих пор было ограничено ситуациями, когда вы могли позволить себе охлаждение компонентов почти до температуры абсолютного нуля: в ускорителях частиц и на экспериментальных реакторах ядерного синтеза, например.

Многие физики все еще верят, что сверхпроводники, работающие при комнатной температуре, могут существовать. Но даже если некоторые аспекты сверхпроводниковых технологий ограничивают их в применении, поиск высокотемпературных сверхпроводников продолжается. И такое открытие проложило бы дорогу невероятным новым технологиям.

В поиске сверхпроводников, работающих при комнатной температуре

После того, как Хейке Камерлинг-Оннес случайно открыл сверхпроводимость, пытаясь доказать теорию лорда Кельвина о том, что сопротивление будет расти при понижении температуры, теоретики пытаются объяснить новое свойство в надежде, что его понимание позволит создать сверхпроводники, работающие при комнатной температуре.

Также было предсказано, что мечта технологов, сверхпроводники при комнатной температуре, может быть неосуществима; максимальная температура сверхпроводимости согласно теории БКШ составляла всего 30 градусов выше абсолютного нуля. Так появилась теория БКШ (Бардина, Купера, Шриффера), которая объясняет некоторые свойства сверхпроводников.

«Высокая температура» все еще очень холодная: самая высокая температура для сверхпроводимости составила -70 градусов для сульфида водорода при чрезвычайно высоком давлении. В 1980-х годах все изменилось, благодаря открытию необычной высокотемпературной сверхпроводимости. К сожалению, высокотемпературные сверхпроводники, которые требуют относительно дешевого жидкого азота, а не жидкого гелия, для охлаждения — это по большей части хрупкая керамика, которую крайне сложно свернуть в провода и применить на практике. При нормальном давлении верхним пределом является -140 градусов.

Учитывая ограничения высокотемпературных сверхпроводников, ученые продолжают полагать, что есть лучший вариант, ожидающий открытия — невероятный новый материал, который сделает сверхпроводимость доступной, практичной, а главное — работающей при комнатной температуре.

Волнительные намеки

Это похоже на попытку угадать номер телефона, который составлен из таблицы периодических элементов вместо цифр. Без подробного теоретического понимания возникновения этого явления — хотя существенный прогресс делается постоянно — ученые иногда чувствуют, что занимаются гаданием на кофейной гуще, пытаясь подобрать подходящие материалы. Нобелевская премия и дивный, новый мир энергии и электричества — неплохая награда за успешный результат. Но перспектива остается и очень волнует.

Соединение купратов с различными элементами, экзотическими соединениями вроде ртуть-барий-кальций-медь оксида, создают лучшие сверхпроводники, известные сегодня. В некоторых исследованиях основное внимание уделяется купратам, сложным кристаллам, содержащим слои меди и атомов кислорода.

Ученые также продолжают сообщать аномальные и неожиданные новости о том, что пропитанный водой графит может выступать в качестве сверхпроводника, работающего при комнатной температуре, но нет никаких указателей на то, что эти новости можно положить в основу технологий.

Для этого им понадобилось давление, превышающее давление в ядре Земли и в тысячи раз большее, чем на дне океана. В начале 2017 года, исследуя самые экстремальные и экзотические формы материи, которые мы можем создать на Земле, ученые умудрились сжать водород до состояния металла. Некоторые ученые в этой области — физике конденсированной материи — вообще сомневаются, что металлический водород удалось произвести.

Но работа с образцами оказывается очень сложной, потому что даже алмазы, содержащие металлический водород, не выдерживают катастрофического давления. Однако полагается, что металлический водород может быть сверхпроводником, работающим при комнатной температуре.

Проблема лишь в том, что транспорт электрона проходил лишь крошечную долю секунды и требовал бомбардировки материала лазерными импульсами. Сверхпроводимость — или поведение, сильно ее напоминающее, — также наблюдалась у иттрий-барий-медь оксида при комнатной температуре в 2014 году.

Не особо практично — да. Интересно — еще бы!

Нобелевская премия по физике 2016 года была присуждена за теоретическую работу, которая характеризует топологические изоляторы — материалы, проявляющие похожее странное квантовое поведение. И другие новые материалы демонстрируют любопытные свойства. Их можно считать идеальными изоляторами в общей массе материала, но необычайно хорошими сверхпроводниками в тонком слое на поверхности.

Также они считаются потенциально важными компонентами миниатюрных микросхем. Microsoft делает ставку на топологические изоляторы в качестве ключевого компонента квантового компьютера.

Это материалы толщиной в один атом или молекулу. Некоторые примечательные свойства транспорта электронов также наблюдались в новых «двумерных» структурах — подобных графену, но из других элементов.

Непонятно, может ли существовать сверхпроводник, работающий при комнатной температуре, но открытие высокотемпературных сверхпроводников является многообещающим показателем того, что необычные и очень полезные квантовые эффекты могут быть найдены совершенно неожиданно. Сверхпроводимость при комнатной температуре остается такой же неуловимой и захватывающей, какой и была на протяжении более века.

Возможно, в будущем — при помощи искусственного интеллекта или открытий камерлингов-оннесов 21 века — эти технологии также станут неотличимы от магии.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть