Железо

Российские учёные представили оптический транзистор, работающий при комнатной температуре

Пока всё это используется только для передачи данных (и от этого уже есть эффект в виде снижения потребления интерфейсов), хотя настоящий прорыв произойдёт только тогда, когда получится создать полностью оптический транзистор. Сегодня для работы с оптикой на уровне электронных схем требуются достаточно сложные и сравнительно крупные элементы: полупроводниковые лазеры, фотоэлементы, волноводы и сопутствующие конструкции для управления световыми потоками в составе чипа. Впрочем, при температурах, близких к абсолютному нулю, в полупроводниках возникают явления тип квантовых колодцев, когда фотон может стать «материальным» ― начать взаимодействовать с материалом и, следовательно, становится управляемым. К сожалению, в силу своей физической природы фотоны слабо взаимодействуют друг с другом и с материей. А управляемый фотон ― это не что иное, как следствие работы полностью оптического транзистора.

Информация о разработке представлена на сайте журнала Nature Photonics (к полной статье доступ платный). Как сообщает информагентство РИА, группа учёных из «Сколтеха» совместно с исследователями из цюрихского центра компании IBM создали оптический транзистор, способный работать при комнатной температуре. Этот материал также как полупроводники характеризуется наличием квантовых колодцев ― чередующихся зон с меньшей шириной запрещённой зоны, окружённых участками с большей шириной запрещённой зоны. Повысить рабочую температуру оптического транзистора до окружающей удалось благодаря переходу на такой органический материал (полимер), как полипарафенилен (MeLPPP). Но и это не всё.

Такая виртуальная частица называется поляритон. Оперировать приходится не чистым фотоном, а квазичастицей, которая возникает в ходе взаимодействия фотона и элементарного возбуждения среды (материала). Эта квазичастица возникает при взаимодействии фотонов с возбуждением в диэлектрике. В данном случае учёные научились управлять экситон-поляритоном (exciton-polaritons). Фотоны превращаются в экситон-поляритоны (происходит как бы расщепление светового потока или вычленение квазичастиц), и только потом появляется возможность использовать экситон-поляритоны для переключения и усиления сигнала, что аналогично работе транзистора. Тем самым задача по созданию оптической логики разбивается на две части.

Квантовый колодец в данном случае ― это атом активного материала с вращающимся вокруг него электроном. Конструктивно поляритон представляет собой оптический резонатор из двух отражающих волны зеркал вокруг квантового колодца со световой волной внутри. Эксперименты с подобным оптическим «транзистором» показали, что структура демонстрирует усиление на уровне 10 дБ мкм-1 и скорость переключения быстрее пикосекунды. Эта структура может поглощать фотон и излучать его. Что же, процессоры на оптических транзисторах обретают какие-то контуры. Что важно, на основе оптического транзистора учёные создали каскадный усилитель и логические элементы, а не просто доказали работоспособность отдельной транзисторной структуры. Когда-нибудь они могут стать реальностью.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть