Хабрахабр

Революция закончилась. Есть ли альтернатива литий-ионному аккумулятору?

Каждый год технологические СМИ сообщают нам о готовящейся энергетической революции — ещё чуть-чуть, еще год-другой, и мир увидит аккумуляторы с фантастическими характеристиками. Недавно мы рассказывали об истории изобретения литий-ионных аккумуляторов, которые дали мощнейший толчок развитию портативной электроники. Так куда делись все инновационные аккумуляторы и есть ли вообще какая-то альтернатива Li-Ion?
Время идет, а революции не видно, в наших телефонах, ноутбуках, квадрокоптерах, электромобилях и смарт-часах по-прежнему установлены разные модификации литий-ионных батарей.

Когда ждать аккумуляторную революцию?

Жаль вас расстраивать, но она уже прошла. Просто растянулась на пару десятилетий и потому осталась почти незамеченной. Дело в том, что изобретение литий-ионных батарей стало апогеем эволюции химических аккумуляторов.

В периодической таблице существует всего 90 природных элементов, которые могут участвовать в такой реакции. Химические источники тока основаны на окислительно-восстановительной реакции между элементами. Так вот, литий оказался металлом с предельными характеристиками: самой низкой массой, самым низким электродным потенциалом (–3,05 В) и самой высокой токовой нагрузкой (3,83 А·ч/г).

Использование других элементов может улучшить одну характеристику и неизбежно ухудшит другую. Литий является лучшим активным веществом для катода из существующих на Земле. Старый-добрый аккумулятор с катодом из оксида литий-кобальта, который пришел к нам аж из 80-х годов прошлого века, до сих пор можно считать самым распространенным и универсальным благодаря отличному сочетанию напряжения, токонагрузки и энергетической плотности. Именно поэтому уже 30 лет продолжаются эксперименты именно с литиевыми батареями — комбинируя материалы, среди которых бессменно есть литий, исследователи создают типы аккумуляторов с нужными характеристиками, которые находят очень узкое применение.

Решить их обычно не получается. Поэтому, когда очередной стартап устами СМИ громко обещает миру энергетическую революцию со дня на день, ученые скромно умалчивают о том, что у новых батарей есть некоторые проблемы и ограничения, которые только предстоит решить.

Главная проблема «революционных» батарей

Сегодня существует множество типов аккумуляторов с разным химических составом, в том числе и без использования лития. Каждый из типов со своими характеристиками нашел свое применение в определенном виде техники. Легкие, тонкие и с высоким напряжением литий-кобальтовые аккумуляторы давно прописались в компактных смартфонах. Выносливые, мощные, но очень габаритные литий-титанатные батареи уместились в общественном транспорте. А малоемкие пожаробезопасные литий-фосфатные ячейки используются в виде больших массивов на электростанциях.

Главные критерии, которым они отвечают, — высокое напряжение 3,6 В при сохранении высокой энергоемкости на единицу объема. Но всё же самыми востребованными являются именно литий-кобальтовые батареи для потребительской мобильной техники. К сожалению, многие альтернативные виды литиевых батарей имеют гораздо меньшее напряжение — ниже 3,0 В и даже ниже 2,0 В — запитать от которых современный смартфон невозможно.

Так что если очередная перспективная батарея с чудо-характеристиками оказывается непригодной для применения в мобильной технике или электромобилях, ее будущее почти гарантированно предрешено. Компенсировать проседание любой из характеристик можно объединением батарей в ячейки, но тогда растут габариты. Зачем нужен аккумулятор со сроком жизни в 100 тысяч циклов и быстрой зарядкой, от которого можно запитать разве что наручные часы со стрелками?

Неудачные эксперименты

Не все из описанных далее аккумуляторов можно считать неудачными — некоторые требуют очень долгой доработки, некоторые могут найти свое применение не в смартфонах, а специализированной технике. Тем не менее, все эти разработки позиционировали как замену литий-ионных батарей в смартфонах.

Компания использовала новый электролит (Solvent-in-Salt) и кремниевый катод, которые позволили значительно увеличить энергоемкость и стойкость к высоким температурам вплоть до 300 °C. В 2007 году американский стартап Leyden Energy получил $4,5 млн инвестиций от нескольких венчурных фондов на создание, как они сами заявляли, литий-ионных батарей нового поколения. Попытки сделать на основе разработок аккумуляторы для ноутбуков закончились неудачно, поэтому Leyden Energy переориентировался на рынок электромобилей.

Будь у компании больше времени и финансирования, возможно, ей и не пришлось бы в 2012 году распродавать оборудование, патенты и уходить под крыло другой энергетической компании, A123 Systems. Несмотря на постоянные вливания десятков миллионов долларов, компания так и не смогла наладить производство аккумуляторов со стабильными характеристиками — показатели плавали от экземпляра к экземпляру.

SolidEnergy занялась созданием перезаряжаемых литий-металлических ячеек. Литий-металлические батареи — не новость: к их числу относится любая неперезаряжаемая литиевая батарейка. То есть в прежний объем можно было уместить вдвое больше энергии. Новый продукт обладал удвоенной энергоемкостью по сравнению с литий-кобальтовыми батареями. До недавних пор литий-металлические аккумуляторы были крайне взрывоопасны из-за роста дендритов (вырастающих на аноде и катоде деревообразных металлических образований), приводивших к короткому замыканию, но добавление в электролит серы и фосфора помогло избавиться от дендритов (правда, SolidEnergy пока не обладает технологией). Вместо традиционного графита на катоде в них использовалась литий-металлическая фольга. Помимо очень высокой цены среди известных проблем аккумуляторов SolidEnergy значится долгая зарядка — 20% от емкости в час.

Источник: SolidEnergy Systems

Активные работы над серно-магниевыми элементами начали в 2010-х годах, когда Toyota объявила об исследованиях в этой области. Сравнение размеров литий-металлической и литий-ионной батарей равной емкости. Проблема электролита в том, что он разрушает серу и делает аккумулятор неработоспособным, поэтому заливать электролит приходилось непосредственно перед использованием. Анодом в таких батареях является магний (хороший, но не равноценный аналог лития), катод состоит из серы и графита, а электролит представляет собой обычный соляной раствор NaCl.

Как оказалось, стабилизированный аккумулятор все равно невозможно использовать на протяжении долгого времени, так как спустя 50 циклов его емкость падает вдвое. Инженеры Toyota создали электролит из ненуклеофильных частиц, неагрессивный к сере. Единственная причина, по которой продолжаются работы над столь капризной батареей, это высокая теоретическая энергоемкость (1722 Вт·ч/кг). В 2015 году в состав батареи интегрировали литий-ионную добавку, а спустя еще два года обновили электролит, доведя срок службы аккумулятора до 110 циклов. Но может оказаться, что к моменту появления удачных прототипов серно-магниевые элементы уже будут не нужны.

Выработка вместо накопления энергии

Некоторые исследователи предлагают пойти от обратного: не запасать, а вырабатывать энергию прямо в устройстве. Можно ли превратить смартфон в маленькую электростанцию? За последнее десятилетие было несколько попыток избавить гаджеты от необходимости в подзарядке через электросеть. Судя по тому, как мы сейчас заряжаем смартфоны, попытки оказались неудачными — напомним о самых «удачных» изобретениях.

В это время как раз происходил переход от долгоживущих кнопочных телефонов к требовательным смартфонам с большим экраном — литий-ионных аккумуляторов в них хватало максимум на два дня работы, поэтому идея мгновенной перезарядки казалась очень привлекательной. Топливная ячейка с прямым распадом метанола (DFMC). Попытки внедрить топливные элементы на метаноле в мобильную технику начались в середине 2000-х.

Протон водорода переходит к катоду, соединяется с кислородом и образует воду. В топливной ячейке метанол на полимерной мембране, выступающей в роли электролита, окисляется в диоксид углерода. Нюанс: для эффективного протекания реакции нужна температура около 120 °C, но ее можно заменить платиновым катализатором, что закономерно влияет на стоимость элемента.

Поэтому к концу 2000-х идея DFMC оформилась в виде портативных аккумуляторов (пауэр-банков). Уместить топливный элемент в корпус телефона оказалось невозможно: слишком уж габаритным получался топливный отсек. Он весил 280 г и размерами напоминал современные портативные аккумуляторы на 30000 мА·ч, то есть был размером с ладонь. В 2009 году Toshiba выпустила в продажу серийный пауэр-банк на метаноле под названием Dynario. Одна «заправка» требует 14 мл, ее объема хватало на две зарядки кнопочного телефона через USB током 500 мА. Цена на Dynario в Японии составляла впечатляющие $328 и еще $36 за комплект из пяти пузырьков по 50 мл метанола.

Видео с демонстрацией заправки и работы Toshiba Dynario

Дальше выпуска экспериментальной партии в 3000 экземпляров дело не пошло, потому что топливный пауэр-банк оказался слишком противоречивым: сам по себе дорог, с дорогими расходниками и высокой стоимостью одной зарядки телефона (около $1 для кнопочного). Кроме того, метанол ядовит и в некоторых странах требует лицензии на его продажу и даже покупку.

У таких панелей невысокий КПД при высокой стоимости и слишком малая мощность, при этом они являются самым простым способом выработки электричества. Прозрачные солнечные панели. Солнечные батареи — это отличное решение для добычи нескончаемой (на нашем веку) энергии Солнца. Так сказать, сочетать приятное с полезным — генерирование электроэнергии и естественное освещение пространства. Но настоящей мечтой человечества являются прозрачные солнечные панели, которые можно было бы устанавливать вместо стекол в окна домов, автомобилей и теплиц. Плохая — в том, что они практически бесполезны. Хорошая новость заключается в том, что прозрачные солнечные панели существуют.

Источник: YouTube / Michigan State University

Чтобы «поймать» фотоны света и превратить их в электричество, солнечная панель в принципе не может быть прозрачной, но новый прозрачный материал может поглощать УФ- и ИК-излучение, переводя всё в ИК-диапазон и отводя на грани панели.
Разработчик и Университете Мичигана демонстрирует прозрачную панель без рамки. Система работает, только с КПД 1-3%… Средний КПД современных солнечных батарей составляет 20%. По краям прозрачной панели в качестве рамки установлены обычные кремниевые фотовольтаические панели, которые улавливают отведенный свет в ИК-диапазоне и вырабатывают электричество.

Еще во время анонса решения для смартфонов Wysis обещала мощность такой солнечной зарядки порядка 5 мВт с 1 см2 экрана, что крайне мало. Несмотря на более чем сомнительную эффективность решения, известный производитель часов TAG Heuer в 2014 году анонсировал премиальный кнопочный телефон Tag Heuer Meridiist Infinite, в котором поверх экрана была установлена прозрачная солнечная панель производства Wysis. Учитывая, что комплектный адаптер смартфона Apple ругают за неприлично низкую мощность 5 Вт, понятно, что с мощностью 0,4 Вт его не зарядишь. Например, это всего 0,4 Вт для экрана iPhone X.

Кстати, пускай с метанолом не получилось, но топливные ячейки на водороде получили билет в жизнь, став основой электромобиля Toyota Mirai и мобильных электростанций Toshiba.

А что получилось: удачные эксперименты с Li-Ion

Успеха достигли те, кто не рвался во что бы то ни стало перевернуть мир, а просто работал над совершенствованием отдельных характеристик аккумуляторов. Смена материала катода сильно влияет на напряжение, энергоемкость и жизненный цикл батарей. Далее мы расскажем о прижившихся разработках, которые лишний раз подтверждают универсальность литий-ионной технологии — на каждую «революционную» разработку находится более эффективный и дешевый существующий аналог.

Графитовый анод, катод из оксида литий-кобальта, классический аккумулятор, описанный выше. Литий-кобальтовые (LiCoO2, или LCO). Рабочее напряжение: 3,6 В, энергоемкость до 200 Вт·ч/кг, срок жизни до 1000 циклов. Это сочетание чаще всего используется в батареях для мобильной техники, где требуется высокая энергоемкость на единицу объема.

Первый эффективный альтернативный состав был разработан еще до начала продаж литий-ионных аккумуляторов как таковых. Литий-марганцевый (LiMn2O4, или LMO). Рабочее напряжение: 3,7 В, энергоемкость до 150 Вт·ч/кг, срок жизни до 700 циклов. Литий-марганцевые аккумуляторы применяются в требовательном к силе тока оборудовании, например, электроинструменте. На катоде использовалась литий-марганцевая шпинель, позволившая уменьшить внутреннее сопротивление и значительно повысить отдаваемый ток.

Сочетание никеля, марганца и кобальта оказалось очень удачным, аккумуляторы нарастили и энергоемкость, и силу отдаваемого тока. Литий-никель-марганец-кобальтовые (LiNiMnCoO2, или NMC). Рабочее напряжение: 3,7 В, энергоемкость до 220 Вт·ч/кг, срок жизни до 2000 циклов. NMC-аккумуляторы устанавливают в большинство электромобилей, иногда разбавляя их литий-марганцевыми ячейками, так как у таких аккумуляторов большой срок жизни. В тех же «банках» 18650 емкость поднялась до 2800 мА·ч, а максимальный отдаваемый ток — до 20 А.

Прошлый LMO-аккумулятор имел меньшую емкость и изнашивался гораздо быстрее.
Новая NMC-батарея электрокара Nissan Leaf по расчетам производителя проживет 22 года. Открытый в 1996 году состав помог увеличить силу тока и повысить жизненный цикл литий-ионных аккумуляторов до 2000 зарядок. Источник: Nissan

Литий-железо-фосфатный (LiFePO4, или LFP). Рабочее напряжение: 3,3 В, энергоемкость до 120 Вт·ч/кг, срок жизни до 2000 циклов. Вот только энергоемкость у них неподходящая для мобильной техники — при поднятии напряжения до 3,2 В энергоемкость снижается минимум вдвое относительно литий-кобальтового состава. Литий-фосфатные батареи безопаснее предшественников, лучше выдерживают перезаряд. Но зато у LFP меньше проявляется саморазряд и наблюдается особая выносливость к низким температурам.

Такие массивы используют для безопасного накопления энергии с солнечных батарей.
Массив литий-фосфатных ячеек с общей емкостью 145,6 кВт⋅ч. Очень похож на NMC-аккумулятор, обладает отличной энергоемкостью, подходящим для большинства техники номинальным напряжением 3,6 В, но высокая стоимость и скромный срок жизни (порядка 500 циклов зарядки) не дают NCA-батареям победить конкурентов. Источник: Yo-Co-Man / Wikimedia

Литий-никель-кобальт-алюминий-оксидный (LiNiCoAlO2, или NCA). Рабочее напряжение: 3,6 В, энергоемкость до 260 Вт·ч/кг, срок жизни до 500 циклов. Пока что их используют лишь в некоторых электромобилях.

Видео вскрытия святая святых — NCA-ячейки батареи электромобиля Tesla Model S

Литий-титанатный (Li4Ti5O12, или SCiB/LTO). Рабочее напряжение: 2,4 В, энергоемкость до 80 Вт·ч/кг, срок жизни до 7000 циклов (SCiB: до 15 000 циклов). Один из самых интересных типов литий-ионных аккумуляторов, в которых анод состоит из нанокристаллов титаната лития. Кристаллы помогли увеличить площадь поверхности анода с 3 м2/г в графите до 100 м2/г, то есть более чем в 30 раз! Литий-титанатный аккумулятор заряжается до полной емкости в пять раз быстрее и отдает в десять раз более высокий ток, чем другие батареи. Однако у литий-титанатных аккумуляторов есть свои нюансы, ограничивающие сферу применения батарей. А именно, низкое напряжение (2,4 В) и энергоемкость в 2-3 раза ниже, чем у других литий-ионных аккумуляторов. Это значит, что для достижения аналогичной емкости литий-титанатную батарейку надо увеличить в объеме в несколько раз, из-за чего в тот же смартфон ее уже не вставишь.

Весит 15 кг, а размером с коробку для обуви: 19х36х12 см.
SCiB-модуль производства Toshiba с емкостью 45 А·ч, номинальным напряжением 27,6 В и током разрядки 160 А (импульсно до 350 А). Например, электромобилях Honda Fit-EV, Mitsubishi i-MiEV и в московских электробусах! Источник: Toshiba

Зато литий-титанатные батареи сразу же прописались в транспорт, где важна быстрая зарядка, высокие токи при разгоне и устойчивость к холодам. SCiB-аккумуляторы Toshiba благодаря использованию в аноде титана-ниобия восстанавливают до 90% емкости всего за 5 минут — допустимое время для стоянки автобуса на конечной остановке, где есть зарядная станция. На старте проекта московские автобусы использовали другой тип батарей, из-за чего возникали неполадки еще на середине первого проезда по маршруту, но после установки литий-титанатных батарей производства Toshiba сообщений о разрядившихся электробусах больше не поступало. Число циклов зарядки, которое выдерживает SCiB-батарея, превосходит 15 000.

Тест литий-титанатной батареи Toshiba на разгерметизацию. Загорится или нет?

Энергетическая сингулярность

Больше полувека человечество мечтает уместить в батарейки энергию атома, которая обеспечивала бы электричество многие годы. На самом деле еще в 1953 году был изобретен бетавольтаический элемент, в котором в результате бета-распада радиоактивного изотопа электроны превращали атомы полупроводника в ионы, создавая электрический ток. Такие батареи используются, например, в кардиостимуляторах.

Да пока ничего, мощность атомных элементов ничтожна, она измеряется в милливаттах и даже микроваттах. А что насчет смартфонов? Купить такой элемент питания можно даже в интернет-магазине, правда, запитать от него не выйдет даже пресловутые наручные часы.

Пожалуйста, City Labs P200 — 2,4 В, 20 лет службы, правда, мощность до 0,0001 Вт и цена около $8000.
Долго ли ждать атомных батареек? Возможно, одна из очередных новостей о прорывном источнике питания станет пророческой, и к 2030-м годам мы попрощаемся с литием и необходимостью ежедневной зарядки телефонов. Источник: City Labs

С момента изобретения стабильных литий-ионных аккумуляторов до начала их серийного производства прошло более 10 лет. Но пока именно литий-ионные батареи определяют прогресс в области носимой электроники и электромобилей.

Показать больше

Похожие публикации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»