Главная » Хабрахабр » Рассчитываем вероятности для статьи «Нечестная игра, или как нас обманывают организаторы розыгрышей»

Рассчитываем вероятности для статьи «Нечестная игра, или как нас обманывают организаторы розыгрышей»

Статья с разбором игры известной торговой сети вызвала у нас в Cloud4Y живой интерес. Вот небольшие отрывки, чтобы ввести вас в курс дела:

Игра (акция), посвящённая чемпионату мира по футболу, представляла собой незамысловатое поле три на три, заполненное футбольными мячами. Однажды, солнечным весенним утром, почитывая городской форум, я наткнулся на ссылку с простенькой игрой от известной торговой сети. При открытии трёх одинаковых картинок участнику гарантировалось бесплатное получение данного товара в одном из магазинов сети. Кликая по мячу, мы открывали картинку с тем или иным товаром. Также под одним из мячей имелось изображение красной карточки, открытие которой означало конец игры.

Автор статьи принялся расследовать причины своего проигрыша и по результатам расчетов выяснил следующее:

Для 5 полей пришлось повозиться, но расчётная вероятность получилась также 25%.
...
Запустив скрипт, я получил неожиданный результат — 25% выигрышей. Быстрый набросок формул на салфетке, и выяснилось, что вероятность выигрыша — 1/4. Поиграв с количеством выигрышных элементов и общим количеством полей, я выяснил, что вероятность выигрыша в подобной игре не зависит от количества полей и равна единице, поделенной на количество выигрышных элементов, увеличенных на единицу.

Нас заинтересовала правильность такого расчета и, заменив салфетку на Excel, мы взялись за дело в поисках математической истины. Читателей, увлекающихся теорией вероятности, приглашаем под кат, дабы проверить правильность наших вычислений.
Прежде всего выясняем правила игры. В этом нам, сам того не зная, помог пользователь Хабра Stecenko в своем комментарии. Также он пишет:

Если посмотреть скрипт автора, то он написан из предположения, что на поле ОБЯЗАТЕЛЬНО есть три карточки одного товара, по одной карточке еще пяти других товаров, и одна красная карточка, в то время как из описания игры этого абсолютно не следует — в правилах не сказано, что на поле обязана присутствовать выигрышная комбинация.

В правилах, однако, сказано, что всего участвует 26 товаров. Получается, что генерируется выдача из 9 карт: 8 карт — это сочетания 26 товаров с повторениями, а одна карточка красная.

Игра состоит из нескольких слоев: В таких условиях расчет математической вероятности выигрыша несколько сложнее, чем предположил автор оригинального поста.

  • Вероятность открыть N карт, не открывая красную — вероятность разной продолжительности игры без учета будет ли приз.
  • Вероятность собрать комбинацию из 3 карт с одинаковыми товарами. Эта вероятность изменяется при разной продолжительности игры. Важно понимать, что набор из 8 карт с товарами и всегда одной красной не обязательно содержит хотя бы одну пару одинаковых карточек, не говоря о сразу трёх.

Начнём с простого — с понимания как будет уменьшаться число участников при росте числа открытых ими карт из-за правила красной карточки.

Шансы разной продолжительности игры

Мы вычисляем, насколько вероятно, что за N испытаний (открытых карточек) будет открыта красная.

Это не гарантировало нам строго 1 красную карточку, при таком распределении вероятнее всего была одна красная карточка, но их могло быть как 0, так и все 9 с очень-очень маленькой вероятностью. UPD: Первоначально мы рассчитывали вероятность открыть красную с помощью биномиального распределения. Опять же, спасибо Stecenko за то, что в комментарии указал нам на ошибку и предложил верное решение.

Остальные игроки выбывают по причине красной карточки, так и не узнав, была ли выигрышная комбинация в выданном наборе карточек. В последнем столбце показано сколько игроков из ста остаются в игре с такой продолжительностью.

Это является условием получения приза. Теперь рассчитаем вероятности собрать комбинацию из трех карточек с одинаковыми товарами.

Шансы на призы

Разложим игру логически. Мы открываем первую карту, а затем под эту карту подбираем пару, под пару подбираем тройку. С таким подходом мы можем рассчитать вероятность получить 3 одинаковых карты за три или больше попыток, исходя из того, что всего товаров в игре 26.

Для задач с фиксированным числом тестов или испытаний, если результатом любого испытания может быть только успех или неудача, испытания независимы, а вероятность успеха остается постоянной в течение всего эксперимента будем использовать формулу Бернулли — в Excel функция БИНОМ.РАСП.

Какова вероятность открыть три одинаковые за три попытки? С помощью функции БИНОМ.РАСП можно вычислить, например, вероятность того, что двое из трех следующих новорожденных будут мальчиками.

=БИНОМ.РАСП(3;3;1/26;0) по маске
=БИНОМ.РАСП(число_успехов; число_испытаний; вероятность_успеха; интегральная)

Или вот формула для расчета вероятности получить 3 одинаковых и определенных товара за 8 попыток.

=БИНОМ.РАСП(3;8;1/26;0), так?

Когда мы достигли продолжительности игры в 4 испытания, не допустив открытия красной и продолжая играть, мы получаем ситуацию с возможностью двух пар для подбора выигрышной тройки. Не совсем.

Наши открытые карточки А-Б-А-Б. Условно два товара из 26 — это А и Б. Вероятность больше не 1/26, а 1/26+(1/26)*«Вероятность двух пар при данной продолжительности игры».

Вероятность двух пар при данной продолжительности игры = БИНОМ.РАСП(2;5;1/26;0)^2

Это означает, что вероятность теперь равна При достижении большей длины игры к 7 попытке у нас появляется комбинации типа А-Б-А-Б-В-В.

=1/26*(1 +БИНОМ.РАСП(2;7;1/26;0)^2 +БИНОМ.РАСП(2;7;1/26;0)^3) и мы ищем третью карту для 1, 2 или трёх пар.

Количество повторов товара в матрице это количество совпадений с любым одним товаром, а значит для выигрыша достаточно двух повторов к одному товару, а не совпадения 3 с определенным загаданным результатом. UPD: Также первоначально мы не учли, что первая попытка в нашем расчете выигрыша, очищенного от вероятности выбрать красную, — это открытие любого из 26 товаров, а значит 100% успех. Таким образом, первый выбор любой карты и две попытки подобрать ещё две такие же образуют в сумме три эксперимента.

Зная вероятности, мы строим матрицу:

Помним, что вероятность выигрыша меняется на 4 попытке и на 7, а значит учитываем это в формуле БИНОМ.РАСП В ней мы находим вероятность каждого максимального количества повторов какого-либо товара для каждого варианта продолжительности игры.

Так как игра прекратиться, как только мы соберем тройку, мы складываем вероятности по столбцам в области, выделенной жирным шрифтом. Нам нужны варианты с максимальным количеством повторов какого-либо товара 3 и более.

Суммируя эти произведения, мы получаем вероятность 0,0192 или 192 победителя на 10000 игроков. Далее мы перемножаем шансы каждой продолжительности игры на шансы выиграть приз при такой продолжительности.

Совсем не 25%. Да, действительно это очень низкая вероятность. Снова обратимся к правилам игры:

Призовой фонд: 8.

1. 8. Доступные призы: названия и количества

Итого 166000

116000 делим на вероятность выигрыша и получаем около 6 млн участников для того, чтобы разыграть все призы. Напомним, что на 1 января 2018 года по оценке Росстата в России было 146 938 921 постоянных жителей. Видимо, такова задумка организаторов игры — предоставить шанс выиграть почти каждому гражданину России.

Сейчас мы можем проверить наши вычисления на практике с помощью скриптов, но удивителен Божий дар ума математиков-теоретиков предыдущих поколений, которые рассчитывали такое количество вероятностей, находя верное решение на бумаге и с помощью мысленных экспериментов. UPD: Итоговая вероятность изменилась после внесенных правок.

Зная математическую сторону вопроса, вы сможете сами сделать вывод о честности организаторов. Анализ кода показал автору оригинальной публикации, что скрипт ещё до начала игры “знает” её итог, однако никто не знает какой предопределенный результат выдаст скрипт конкретному пользователю.


Оставить комментарий

Ваш email нигде не будет показан
Обязательные для заполнения поля помечены *

*

x

Ещё Hi-Tech Интересное!

Разработка buck-преобразователя на STM32F334: принцип работы, расчеты, макетирование

В двух своих последних статьях я рассказал о силовом модуле и плате управления на базе микроконтроллера STM32F334R8T6, которые созданы специально для реализации систем управления силовыми преобразователями и электроприводом. Так же был рассмотрен пример DC/AC преобразователя, который являлся демонстрацией, а не ...

Simulation theory: взаимосвязь квантово-химических расчётов и Реальности

Введение О чём этот текст Если человек услышит о «симуляции реальности», то в наиболее вероятно ему в голову придут или разные научно-фантастические произведения (типа Матрицы, Темного города, или Теоремы Зеро), или компьютерные игры. В случае людей, чьи головы засорены инженерным ...