Хабрахабр

Радиация: единицы измерения

Вот и когда я опубликовал статью о радиохимической лаборатории, один из читателей пожаловался мне в личку, что у него от множества единиц, встречающихся в книгах и статьях о радиоактивности — рентгены, бэры, рэмы, рады, греи, зиверты, кюри, беккерели и даже грамм-эквиваленты радия — голова идет кругом и попросил об этом написать. При почти каждом разговоре о радиоактивности с неспециалистом оказывается, что собеседник имеет в той или иной степени смутное представление о единицах измерения. Исполняю его просьбу.

Да, на КДПВ — супруги Мария Склодовская-Кюри и Пьер Кюри.

Немного истории

В 1895 году Вильгельм Конрад Рентген открыл излучение, обладавшее удивительными свойствами: действуя, подобно свету, на фотопластинки, и возбуждая свечение люминесцентных экранов, оно с легкостью проникало через прозрачные преграды. Прошло совсем немного времени, как оказалось, что источником подобного излучения является не только работающая трубка Крукса, как в опытах Рентгена, но и вещества, содержащие уран, которые, к тому же, испускают это излучение непрерывно, неизменно и без какого-либо подвода энергии извне. За этим последовала буквально лавина открытий. Открытие радия, полония, а затем целого букета новых радиоактивных элементов, установление связи радиоактивного распада с превращением одного элемента в другой, первые осуществленные ядерные реакции… В общем, удивительно простой опыт Беккереля с урановой солью на завернутой в черную бумаге фотопластинке буквально распечатал «горшочек-не-вари» новых знаний. Разговор об этих открытиях — это тема другой статьи (и не одной), а сейчас я просто скажу, что уже тогда, в первые месяцы и годы этого «радиевого бума» нельзя было обойтись без измерений.

А первым эталоном стала… Первым измерительным прибором для определения интенсивности ионизирующей радиации стал обыкновенный электроскоп или электрометр, который разряжался под действием излучения, и скорость этого разряда была пропорциональна его интенсивности.

Ампула с миллиграммом радия, как мера радиоактивности

Эта ампула стала не только первым эталоном для градуировки электрометров и ионизационных камер — это была мера количества радиоактивности. Удивительным свойством радия оказалось исключительное постоянство его излучения: его интенсивность зависела только от количества радия. Поэтому, взяв однажды навеску в 1 мг радия и запаяв его в платиновую ампулу, стало возможным больше никогда радий не взвешивать. Сравнив интенсивность гамма-излучения от эталонной ампулы и образца, помещенного в ампулу с такой же толщиной стенки, можно было с высокой точностью определить количество радия в нем. Так что ампулы с радием заняли свое законное место в палатах мер и весов рядом с эталонами метра, килограмма и сферическими конями.

И именно с этим связано то, что эталоном была именно запаянная ампула. Строго говоря, источником гамма-излучения является не радий. Он испускает альфа-частицу, превращаясь в радон-222, который тогда называли эманацией радия. Дело в том, что радий-226 не излучает гамма-лучи при распаде. Из запаянной ампулы радону деваться некуда, и между радием и его радиоактивными продуктами распада устанавливается вековое равновесие: сколько радона (и каждого последующего члена радиоактивного ряда) образовалось, столько и распадается. Последний, будучи также альфа-активным, затем претерпевает ряд распадов с испусканием альфа- и бета-частиц, некоторые из которых сопровождаются гамма-излучением.

При сравнении радиоактивности других открытых впоследствии элементов с радием стали применять такую единицу, как миллиграмм-эквивалент радия, равный количеству радиоактивного вещества, который дает такую же интенсивность гамма-излучения, как и миллиграмм радия на том же расстоянии.

Во-многих случаях оно либо отсутствует, либо возникает не в каждом акте распада. Миллиграмм-эквивалент радия, как единица радиоактивности, имеет тот очевидный недостаток, что гамма-излучение, вообще говоря, является своего рода побочным эффектом радиоактивного распада. Эталоном осталась все та же ампула с радием, и отсюда появилась единица кюри, определяемая, как активность радиоактивного вещества, в котором в единицу времени распадается столько же атомов (а именно, $3,7\cdot 10^ $ штук), сколько распадается атомов радия-226 в одном его грамме. Поэтому от сравнения по интенсивности гамма-излучению перешли к понятию активности, как мере количества актов распада в препарате в единицу времени.

В системе СИ ее заменяет беккерель — это активность препарата, в котором в среднем происходит один распад в секунду. Единица кюри в настоящее время считается устаревшей, как и все внесистемные единицы. Таким образом, 1 Ки = $3,7\cdot 10^{10} $ Бк.

Электрометр и экспозиционная доза

Первым устройством для измерения интенсивности радиоактивного излучения, как я говорил, стал электрометр, который разряжался под действием лучей радия. Он стал предтечей ионизационной камеры — камеры с двумя противоположно заряженными электродами, которая позволяла определить количество ионов, образовавшихся в воздухе, заполнявшем камеру. Эти ионы в электрическом поле внутри ионизационной камеры начинают движение к электродам и, достигнув их, разряжают их. По величине уменьшения заряда электродов можно определить число пар ионов, которые образовались в воздухе под действием излучения. А измерив ток, протекающий через камеру в цепи внешнего источника напряжения, можно определить количество ионных пар, рождающихся в камере в единицу времени, пропорциональное интенсивности излучения.

И единицей ее измерения стал рентген. Величина, которую таким образом измеряют, была названа экспозиционной дозой радиоактивного излучения. Кстати, наш эталонный 1 мг радия в платиновой ампуле на расстоянии 1 см в течение часа создает экспозиционную дозу в 8,4 рентгена (обычно в таком случае говорят о мощности экспозиционной дозы 8,4 Р/ч). При экспозиционной дозе в 1 рентген в одном кубическом сантиметре сухого воздуха образуется одна единица СГСЭ ($3,33⋅10^{-10}$ Кл) заряда каждого из ионов, что соответствует $2,082\cdot10^{9} $ пар ионов.

1 Кл/кг = 3875. В системе СИ нет специальной единицы экспозиционной дозы и применяется единица кулон на килограмм. Причина этого отказа в том, что эта достаточно легко измеряемая величина малопригодна для практического применения. 97 Р. Однако в настоящее время данная единица используется крайне редко из-за отказа от самого понятия экспозиционной дозы. Нас обычно интересует не то, сколько ионов образовалось в воздухе, а то действие, которое произвело облучение на вещество или живую ткань.

Поглощенная доза

Вполне очевидной является идея считать мерой воздействия радиоактивного излучения на вещество поглощенную в этом веществе энергию. Это и есть поглощенная доза, мерой которой является энергия излучения, поглощенная единицей массы вещества. Единицей измерения поглощенной дозы в СИ является грей: 1 Гр = 1 Дж/кг. Раньше применялась другая единица — рад. 1 рад = 100 эрг/г = 0,01 Гр. При экспозиционной дозе 1 Р поглощенная доза в воздухе равна 0,88 рад. В большинстве случаев эти 0,88 округляют до единицы, приравнивая рад к рентгену (хотя по сути это разные физические величины), а грей (и зиверт, о котором ниже) к 100 рентгенам.

Именно по этой причине сейчас от понятия экспозиционной дозы отказались. А вот доза в различных веществах при одной и той же экспозиционной дозе будет различной в зависимости от вида и энергии излучения и свойств поглотителя. Тогда с определенной степенью точности можно полагать, что поглощенная доза в детекторе будет равна поглощенной дозе в биологической ткани. На практике гораздо более корректным является измерение не экспозиционной дозы, а взять детектор, средний атомный номер которого равен среднему атомному номеру биологической ткани (в таком случае говорят о тканеэквивалентном детекторе) и измерять поглощенную дозу в нем.

Всякие разные дозы

Но оказывается, разные виды радиоактивных излучений действуют на живую ткань неодинаково. Альфа-излучение, протоны и нейтроны при одинаковой поглощенной дозе наносят ей гораздо больший вред, чем гамма-излучение и бета-частицы. В связи с этим наряду с поглощенной дозой возникает еще один вид дозы — эквивалентная доза. Она равна дозе гамма-излучения, которая вызывает такой же биологический эффект, как и доза данного излучения.
Единицей измерения эквивалентной дозы является зиверт. Старой единицей эквивалентной дозы является биологический эквивалент рентгена или бэр, по-английски REM (порой в переводной литературе и у рентгенологов можно встретить единицу «рэм» — это тот же бэр). 1 Зв = 100 бэр.

Этот коэффициент для фотонов, электронов и мюонов равен единице, для альфа-частиц принят равным 20, для протонов по разным данным — от 2 до 5, а для нейтронов сильно зависит от энергии, достигая 20 в интервале энергий от 100 кэВ до 2 МэВ (см. Для того, чтобы перевести поглощенную дозу в эквивалентную, нужно поглощенную дозу умножить на так называемый коэффициент качества. рисунок).

Она учитывает не только разную степень вредности излучения, но и разную степень вредности облучения той или иной части тела или органа при облучении не всего тела, а его части. Помимо эквивалентной, рассматривают еще и эффективную дозу. При равномерном облучении всего тела эффективная доза равна эквивалентной. Каждой ткани и органу приписывают взвешивающие коэффициенты таким образом, чтобы сумма равнялась единице. Измеряется она в тех же единицах, что эквивалентная.

На этом я и остановлюсь: не буду запутывать вас и рассказывать, что такое керма, амбиентный эквивалент дозы и еще многие штуки.

А как это все измеряют?

Чтобы измерить экспозиционную дозу, как я и говорил, нужно взять некоторый объем воздуха, собрать образовавшиеся в нем ионы и определить их количество, что с успехом решается с помощью ионизационной камеры. Именно на основе ионизационных камер сделана большая часть накопительных дозиметров «карандашного» типа.

И вот тут кроется главная сложность. А чтобы измерить поглощенную дозу, придется измерить количество энергии, выделившееся в веществе. Один грей (а это серьезная доза, уже вызывающая лучевую болезнь) — это всего лишь джоуль на килограмм. Напрямую эту энергию измерить очень сложно, так как в большинстве случаев она очень мала. Если мы попытаемся измерить эту дозу, например, калориметрически — по изменению температуры, то, например, алюминий нагреется всего лишь чуть больше, чем на тысячную градуса.

Они заключаются в том, что мы наблюдаем некий процесс, вызываемый облучением и требующий затраты энергии и предполагаем, что «выход» этого процесса будет линейно зависеть от энергетического вклада поглощенного излучения в него. Поэтому все методы измерения поглощенной дозы или ее мощности косвенные.

Квант гамма-излучения или иная частица, испускаемая радиоактивным веществом, как правило, имеет энергию, значительно превышающую энергию, необходимую для того, чтобы вырвать электрон из атома. Первичным актом взаимодействия ионизирующего излучения с веществом почти всегда является, собственно, ионизация. По всей траектории следования частицы в веществе порождаются свободные электроны и положительно заряженные ионы, энергии которых обычно сами превышают энергию ионизации, что приводит к развитию целого каскада процессов образования свободных электронов и ионов, до тех пор, пока их энергия не окажется сравнимой с энергией химической связи, с первыми энергиями ионизации и т.д. Поэтому одним актом ионизации дело не заканчивается. И их количество и суммарная энергия пропорциональны поглощенной дозе (строго говоря — за вычетом энергии электронов, вылетевших за пределы вещества), при этом они уже «ничего не знают» о том, что их породило.
Исторически одним из первых дозиметров стала обычная фотопленка, завернутая в светонепроницаемый материал. И уже эти электроны и ионы непосредственно осуществляют то воздействие на вещество, которое характерно для ионизирующих лучей: возбуждают люминесценцию, инициируют химические реакции, разрушают биологические структуры, становятся носителями электрического тока. Пленка является дешевым и довольно чувствительным, но не очень надежным дозиметром, так как небольшие отклонения в режимах обработки могут давать заметные погрешности определения дозы. Степень ее почернения после проявления примерно так же зависит от поглощенной дозы, как и от экспозиции обычным видимым светом: имеется область линейной зависимости, ограниченная загибом в области малых доз и насыщением (с последующей соляризацией — падением плотности) в области больших доз. Это может быть раствор в ампуле, темнеющий или окрашивающийся под действием радиации (например, из-за окисления железа (II) до железа (III) с последующим образованием ярко окрашенного в красный цвет роданида), стекло или кристалл, в которых образуются так называемые радиационные дефекты, поглощающие свет. Фотопленка является одним из первых представителей семейства химических дозиметров, в которых величина дозы определяется по количеству образованного или израсходованного в ходе реакции вещества: окрашенного, парамагнитного или обладающего другим легко измеримым свойством. Но, как правило, они не позволяют измерить мощность дозы. Химические дозиметры позволяют определять дозу облучения с высокой точностью и в очень широких пределах — от тех, которые не нанесут человеку особого вреда до тех, которые убьют его в одну минуту.

На этом принципе основано действие сцинтилляционных детекторов, которые позволяют измерять даже очень слабые потоки радиации, в десятки и сотни раз более слабые, чем естественный радиационный фон. Люминесценция позволяет регистрировать даже акт поглощения единственной частицы или гамма-кванта, который приводит к возникновению в материале детектора короткой световой вспышки — сцинтилляции. Разумеется, для того, чтобы получить величину дозы, или мощности дозы, нужно не просто сосчитать число импульсов, а просуммировать, проинтегрировать испущенный сцинтиллятором свет. Сцинтилляционный датчик излучения в отличие от химических детекторов позволяет определять мощность поглощенной детектором дозы в реальном времени.

В них используется люминесцентный материал, который, вместо того, чтобы отмечать вспышкой света каждую частицу, сохраняет образованные ею свободные заряды в виде длительно существующих заряженных дефектов решетки. Особой разновидностью таких детекторов являются так называемые термолюминесцентные детекторы. И проинтегрировав световой импульс, возникающий при нагревании термолюминофора, мы определим накопленную им дозу. При нагревании эти дефекты «залечиваются», а освободившиеся электроны и дырки рекомбинируют, передавая энергию центрам люминесценции.

Средний ток через детектор будет пропорционален мощности поглощенной им дозы. Наконец, мы можем «поймать» не вторичные эффекты, вызванные ионизацией, а сами ионы — совсем как в ионизационной камере, только эта камера заполняется не газом, а полупроводником — германием, кремнием, теллуридом кадмия, наконец — алмазом.

А он не измеряет дозу. А что же всем известный счетчик Гейгера? То есть он может измерить такую характеристику потока частиц, как флюенс: сколько частиц пролетело через заданную площадь. Он может только среагировать импульсом на пролет через него частицы, не разбираясь ни в том, что в него влетело, ни какую энергию оно имело. Точно так же будет работать сцинтилляционный или полупроводниковый детектор, если мы будем только фиксировать факт появления импульса, игнорируя его амплитуду.

Доза в разных материалах и ход с жесткостью

В параграфе про поглощенную дозу я упомянул вскользь, что в одном и том же потоке излучения доза, поглощенная разными материалами, будет разной и будет зависеть от энергии квантов и свойств вещества. В случае гамма-излучения его поглощение определяется единственной характеристикой материала — средним (или эффективным) атомным номером $Z_{eff}$. Гамма-излучение передает веществам с одинаковым $Z_{eff}$ одну и ту же энергию при прохождении слоя с одинаковой массой на единицу площади. Так, материал, имеющий такой же валовой атомный состав, как живая ткань, будет при любых энергиях поглощать гамма-кванты так же, как живая ткань, и таким образом, поглощенная доза в детекторе, сделанном из этого материала будет равна поглощенной дозе в человеческом теле. А если мы сделаем детектор из йодида цезия (один из наиболее часто используемых сцинтилляторов), то мы сможем откалибровать его для какой-нибудь одной энергии, а при других энергиях он будет врать. Такое изменение показаний дозиметрического прибора в зависимости от энергии излучения носит название «хода с жесткостью» или энергетической зависимости дозовой чувствительности детектора.

11, стр. На рисунке (из «Нового справочника химика и технолога», т. Слева сравниваются антрацен (более «легкий» по среднему атомному весу, чем живая ткань) и йодистый натрий (значительно более «тяжелый», чем последняя). 111) приведены энергетические зависимости дозовой чувствительности детекторов, изготовленных на основе разных сцинтилляторов. А на правом графике показано то, что взяв смесь органических сцинтилляторов — более «легкого» и более «тяжелого», чем живая ткань, можно практически полностью устранить «ход с жесткостью». Видно, что в определенном диапазоне энергий детектор на основе йодида натрия завышает величину дозы в 10 раз!

Другим способом устранения «хода с жесткостью» является подбор фильтров, поглощающих излучение в области, где чувствительность детектора избыточна.

Заключение

В заключение приведу небольшую табличку, где сведены основные рассмотренные в статье величины.

А для более полного ознакомления с темой рекомендую лекции профессора Игоря Николаевича Бекмана, МГУ

Показать больше

Похожие публикации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»