Железо

Представлен сверхпроводящий транзистор из графена

Сразу уточним, что поставленный в Национальной лаборатории имени Лоуренса в Беркли эксперимент лишь подтвердил представленные ранее теоретические обоснования, что говорит о предельно раннем этапе исследований. Сказано немного громко, но учёные действительно смогли поставить эксперимент, в котором структура из графена способна переключаться из одного фазового состояния в другое под воздействием управляющего напряжения. Учёным ещё предстоит пройти длинный путь, чтобы транзистор из графена стал коммерческим продуктом.

Экспериментальная структура под электронным микроскопом (Guorui Chen/Berkeley Lab)

Экспериментальная структура под электронным микроскопом (Guorui Chen/Berkeley Lab)

Имитирующая транзистор структура представляет собой три слоя графена, каждый из которых толщиной в один атом, и два слоя нитрида бора по одному сверху и снизу графенового пакета. Статья, посвящённая исследованию, опубликована в журнале Nature. Для работы структуру пришлось охладить до температуры около 5 К. Также к слоям нитрида бора подведены электроды для создания управляющего поля. Поскольку теория для сверхпроводимости при высоких температурах имеет массу белых пятен, подбирать значения управляющих напряжений и температуру охлаждения пришлось экспериментально, с чем учёные успешно справились.

Физика процесса при этом следующая. При одном значении напряжения (силе вертикального электромагнитного поля) «транзистор» прекращал проводить электрический ток ― находился в закрытом состоянии, а при повышении мощности или при дальнейшем снижении температуры (ниже 40 милликельвин) превращался в сверхпроводник и проводил электричество. При наложении структур (листов) образуется так называемая муаровая сверхрешётка с регулярно чередующимися (примерно через 10 нм) участками почти полного совпадения. Строение нитрида бора шестиугольное, которое напоминает строение графена, но из-за разницы расстояний между атомами совпадает с ним только на определённых участках. «Транзисторные переходы» возможно создавать как раз в таких зонах.

Сверхрешётка из листов графена и нитрида бора (Guorui Chen/Berkeley Lab)

Муаровая сверхрешётка из листов графена и нитрида бора (Guorui Chen/Berkeley Lab)

В теории она должна проводить электроны, но из-за сильного взаимодействия электронов этого не происходит. При температуре около 5 К и до определённого значения напряжения структура представляет собой моттовский диэлектрик. Тогда создадутся условия, при которых электроны локально перестанут удерживать друг друга и устремятся в «колодцы» в зонах совпадения кристаллических решёток, а «транзистор» перейдёт в открытое состояние. Нарушить равновесие и перевести структуру в режим сверхпроводимости можно либо с помощью сильного электромагнитного поля, либо в случае дальнейшего охлаждения структуры.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть