Хабрахабр

ПО для машинного обучения на Python

Первые такие инструменты формировались в среде ученых и статистиков, где популярны языки R и Python, исторически сложились экосистемы для обработки, анализа и визуализации данных именно на этих языках, хотя определенные библиотеки машинного обучения есть и для Java, Lua, С++. Сегодня существует большое количество программных инструментов для создания моделей Machine Learning. При этом интерпретируемые языки программирования существенно медленнее компилируемых, поэтому на интерпретируемом языке описывают подготовку данных и структуру моделей, а основные вычисления проводят на компилируемом языке.

Материал содержит общее описание известных библиотек и будет полезен прежде всего тем, кто начинает изучать область ML и хочет примерно понимать, где искать реализации тех или иных методов. В данном посте мы расскажем преимущественно о библиотеках, имеющих реализацию на Python, поскольку этот язык обладает большим количеством пакетов для интеграции в разного рода сервисы и системы, а также для написания различных информационных систем.

Так, например, для анализа изображений, скорее всего, придется иметь дело с нейронными сетями, а для работы с текстом — с рекурентными, при небольшом количестве данных от нейросетей наверняка придется отказаться. При выборе конкретных пакетов для решения задач в первую очередь стоит определиться, заложен ли в них механизм для решения ваших проблем.

Библиотеки общего назначения на Python

Все описанные в данном разделе пакеты так или иначе используются при решении практически любой задачи по машинному обучению. Часто их достаточно, чтобы построить модель целиком, по крайней мере в первом приближении.

NumPy

Библиотека с открытым исходным кодом для выполнения операций линейной алгебры и численных преобразований. Как правило, такие операции необходимы для преобразования датасетов, которые можно представить в виде матрицы. В библиотеке реализовано большое количество операций для работы с многомерными массивами, преобразования Фурье и генераторы случайных чисел. Форматы хранения numpy де-факто являются стандартом для хранения числовых данных во многих других библиотеках (например, Pandas, Scikit-learn, SciPy).

Сайт: www.numpy.org

Pandas

Библиотека для обработки данных. С ее помощью можно загрузить данные практически из любого источника (интеграция с основными форматами хранения данных для машинного обучения), вычислить различные функции и создать новые параметры, построение запросов к данным с помощью агрегативных функций сродни реализованным в SQL. Кроме того, имеются разнообразные функции преобразования матриц, метод скользящего окна и прочие методы для получения информации из данных.

Сайт: pandas.pydata.org

Scikit-learn

Библиотека программного обеспечения с более чем десятилетней историей содержит реализации практически всех возможных преобразований, и нередко ее одной хватает для полной реализации модели. Как правило, при программировании практически любой модели на языке Python какие-то преобразования с использованием данной библиотеки всегда присутствуют.
Scikit-learn содержит методы разбиения датасета на тестовый и обучающий, вычисление основных метрик над наборами данных, проведение кросс-валидации. В библиотеке также есть основные алгоритмы машинного обучения: линейной регрессии (и ее модификаций Лассо, гребневой регрессии), опорных векторов, решающих деревьев и лесов и др. Есть и реализации основных методов кластеризации. Кроме того, библиотека содержит постоянно используемые исследователями методы работы с параметрами (фичами): например, понижение размерности методом главных компонент. Частью пакета является библиотека imblearn, позволяющая работать с разбалансированными выборками и генерировать новые значения.

Сайт: www.scikit-learn.org

SciPy

Довольно обширная библиотека, предназначенная для проведения научных исследований. В ее состав входит большой набор функций из математического анализа, в том числе вычисление интегралов, поиск максимума и минимума, функции обработки сигналов и изображений. Во многих отношениях данную библиотеку можно считать аналогом пакета MATLAB для разработчиков на языке Python. C ее помощью можно решать системы уравнений, использовать генетические алгоритмы, выполнять многие задачи по оптимизации.

Сайт: www.scipy.org

Специфические библиотеки

В данном разделе рассмотрены библиотеки или со специфической сферой применимости, или популярные у ограниченного числа пользователей.

Tensorflow

Библиотека, разработанная корпорацией Google для работы с тензорами, используется для построения нейросетей. Поддержка вычислений на видеокартах имеет версию для языка C++. На основе данной библиотеки строятся более высокоуровневые библиотеки для работы с нейронными сетями на уровне целых слоев. Так, некоторое время назад популярная библиотека Keras стала использовать Tensorflow как основной бэкенд для вычислений вместо аналогичной библиотеки Theano. Для работы на видеокартах NVIDIA используется библиотека cuDNN. Если вы работаете с картинками (со сверточными нейросетями), скорее всего, придется использовать данную библиотеку.

Сайт: www.tensorflow.org

Keras

Библиотека для построения нейросетей, поддерживающая основные виды слоев и структурные элементы. Поддерживает как рекуррентные, так и сверточные нейросети, имеет в своем составе реализацию известных архитектур нейросетей (например, VGG16). Некоторое время назад слои из данной библиотеки стали доступны внутри библиотеки Tensorflow. Существуют готовые функции для работы с изображениями и текстом (Embedding слов и т.д.). Интегрирована в Apache Spark с помощью дистрибутива dist-keras.

Сайт: www.keras.io

Caffe

Фреймворк для обучения нейросетей от университета Беркли. Как и TensorFlow, использует cuDNN для работы с видеокартами NVIDIA. Содержит в себе реализацию большего количества известных нейросетей, один из первых фреймворков, интегрированных в Apache Spark (CaffeOnSpark).

Сайт: cafee.berkeleyvision.org

pyTorch

Позволяет портировать на язык Python библиотеку Torch для языка Lua. Содержит реализации алгоритмов работы с изображениями, статистических операций и инструментов работы с нейронными сетями. Отдельно можно создать набор инструментов для оптимизационных алгоритмов (в частности стохастического градиентного спуска).

Сайт: www.torch.ch

Реализации градиентного бустинга над решающими деревьями

Подобные алгоритмы неизменно вызывают повышенный интерес, так как часто они показывают лучший результат, чем нейросети. Особенно это проявляется, если в вашем распоряжении не очень большие наборы данных (очень грубая оценка: тысячи и десятки тысяч, но не десятки миллионов). Среди моделей-победителей на соревновательной платформе kaggle алгоритмы градиентного бустинга над решающими деревьями встречаются довольно часто.
Как правило, реализации таких алгоритмов есть в библиотеках машинного обучения широкого профиля (например, в Scikit-learn). Однако существуют особые реализации данного алгоритма, которые часто можно встретить среди победителей различных конкурсов. Стоит выделить следующие.

Xgboost

Самая распространенная реализация градиентного бустинга. Появившись в 2014 г., уже к 2016-му она завоевала немалую популярность. Для выбора разбиения используют сортировку и модели, основанные на анализе гистограмм.

Сайт: github.com/dmlc/xgboost

LightGBM

Вариант градиентного бустинга от Microsoft, вышедший в 2017 г. Для выбора критерия разбиения используется Gradient-based One-Side Sampling (GOSS). Имеются методы работы с категориальными признаками, т.е. с признаками, которые явно не выражаются числом (например, имя автора или марка машины). Является частью проекта Microsoft DMTK, посвященного реализации подходов машинного обучения для .Net.

Сайт: www.dmtk.io

CatBoost

Разработка компании Яндекс, вышедшая, как и LightGBM, в 2017 г. Реализует особый подход к обработке категориальных признаков (основанный на target encoding, т.е. на подмене категориальных признаков статистиками на основе предсказываемого значения). К тому же алгоритм содержит особый подход к построению дерева, который показал лучшие результаты. Проведенное нами сравнение показало, что данный алгоритм лучше других работает прямо «из коробки», т.е. без настройки каких-либо параметров.

Сайт: catboost.yandex

Microsoft Cognitive Toolkit (CNTK)

Фреймворк от корпорации Microsoft, имеет интерфейс на C++. Предоставляет реализацию различных нейросетевых архитектур. Может быть интересной интеграцией с .Net.

Сайт: www.microsoft.com/en-us/cognitive-toolkit

Другие ресурсы для разработки

По мере популяризации машинного обучения неоднократно появлялись проекты по упрощению разработки и приведению его в графическую форму с доступом через онлайн. В данном поле можно отметить несколько.

Azure ML

Сервис машинного обучения на платформе Microsoft Azure, в котором можно выстраивать обработку данных в виде граф и проводить вычисления на удаленных серверах, с возможностью включения кода на языке Python и на других.

Cайт: azure.microsoft.com/ru-ru/services/machine-learning-studio

IBM DataScience experience (IBM DSX)

Сервис для работы в среде Jupyter Notebook с возможностью выполнять вычисления в языке Python и на других. Поддерживает интеграцию с известными наборами данных и Spark, проектом IBM Watson.

Сайт: ibm.com/cloud/watson-studio

Пакеты для социальных наук

Среди них можно выделить IBM Statistical Package for the Social Sciences (SPSS) — программный продукт IBM для обработки статистики в социальных науках, поддерживает графический интерфейс задания процесса обработки данных. Некоторое время назад стало можно встраивать алгоритмы машинного обучения в общую структуру выполнения. В целом, ограниченная поддержка алгоритмов машинного обучения становится популярной среди пакетов для статистиков, в которых уже включены статистические функции и методы визуализации (например, Tableau и SAS).

Заключение

Выбор программного пакета, на основе которого будет решаться задача, обычно определяется следующими условиями.

  1. Окружение, в котором будет использоваться модель: необходима ли поддержка Spark, в какие сервисы нужно интегрироваться.
  2. Особенности данных. Чем являются данные: изображением, текстом или это набор чисел, какая обработка им требуется?
  3. Предрасположенность моделей к данному типу задач. Данные с изображений обычно обрабатывают сверточными нейронными сетями, а для небольших наборов данных используют алгоритмы, основанные на решающих деревьях.
  4. Ограничения по вычислительным мощностям, как при обучении, так и при использовании.

Как правило, при разработке на языке Python использования библиотек общего назначения (Pandas, Scikit-learn, numPy) не избежать. Это привело к тому, что их интерфейс поддерживает большинство специализированных библиотек, но, если это не так, надо понимать, что придется самому писать коннекторы или выбирать другую библиотеку.

Построить первую модель можно, используя сравнительно небольшое число библиотек, а дальше придется принимать решение, на что тратить время: на проработку параметров (feature engineering) или на подбор оптимальной библиотеки и алгоритма, или же выполнять эти задачи параллельно.

Если вам нужен алгоритм, который лучше всего работает прямо «из коробки», — это Catboost. Теперь немного о рекомендациях по выбору. При работе с текстом надо определиться, собираетесь ли вы строить нейросеть и учитывать контекст. Если вы предполагаете работать с изображениями, можно использовать Keras и Tensorflow или Caffe. При небольших наборах данных можно использовать алгоритмы генерации новых данных из Scikit-learn и линейные методы, реализованные в той же библиотеке. Если да, те же пожелания, что и к изображениям, если достаточно «мешка слов» (частотных характеристик встречаемости каждого слова), подойдут алгоритмы градиентного бустинга.

Область машинного обучения развивается очень быстро — мы уверены, что новые фреймворки появились уже в момент написания этого поста. Как правило, описанных библиотек хватает для решения большинства задач, даже для победы на соревнованиях.

Николай Князев, руководитель группы машинного обучения «Инфосистемы Джет»

Показать больше

Похожие публикации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»