Хабрахабр

[Перевод] Улучшение работы батарей через химию

[* Название статьи является аллюзией на название первого студийного альбома Fatboy Slim, «Better Living Through Chemistry» / прим. перев.]

Он очень надёжен и прост в использовании, а для его зарядки нужно просто подать на него фиксированное напряжение и немного подождать; в итоге аккумулятор заряжается и остаётся полностью заряженным – вот и всё. Свинцово-кислотный аккумулятор нельзя назвать чудом современной инженерной мысли. На другой стороне этой простоты находятся их размер, вес, плотность энергии и токсичность материалов.

Учёные ищут более безопасные варианты аккумуляторов, улучшенные системы заряда, формулы для дольше работающих батарей, которые можно было бы перезаряжать тысячи раз, и одна недавняя публикация вызвала множество восторженных откликов.
Рассмотрим требования к аккумуляторной ячейке в электромобиле:
Литиевый аккумулятор – современный хит, однако его большая энергетическая плотность приводит к тому, что его корпус небольшого размера может разозлиться и стать весьма опасным при неправильном обращении.

  • Высокая плотность энергии (большое количество энергии в батарейке небольшого размера).
  • Возможность быстрого заряда.
  • Возможность быстрого разряда.
  • МНОГО циклов зарядки/разрядки.
  • Низкий саморазряд.
  • Безопасность.

Пока не существует идеальной батарейки, а конфликтующие запросы гарантируют наличие на рынке нескольких вариантов. На текущий момент наилучшим вариантом являются литий-ионные аккумуляторы, однако химических реакций с применением лития есть предостаточно, и в зависимости от планируемого использования, балансировки и зарядки, можно оптимизировать различные варианты реакций под различные характеристики работы.

Как работает литий+ион


Разрядка литий-ионной батареи

Есть три компонента: анод, катод и электролит. Все аккумуляторы работают одинаково. Пары электродов делаются из разных материалов. Химическая реакция между электролитом и электродами (анодом и катодом) создаёт ионы рядом с одним электродом, и электроны рядом с другим, в результате чего возникает разность потенциалов. Электролит работает подобием изолятора, поэтому электронам проще идти с одного электрода на другой через контур, чем внутри батареи. Анод – это графит, связанный с медью, а катод – кристалл лития, связанный с алюминием. Для зарядки батареи процесс обращается вспять, и напряжение, подаваемое на электролит, запускает реакцию в другую сторону. По окончанию реакции батарея разряжается, и реакция больше не будет идти, если электронам будет некуда податься. Не все электролиты созданы равными; химия батарейки, которую нельзя перезаряжать, позволяет ей хранить больше энергии, но приложение обратного напряжения в ней не запускает химическую реакцию вспять.

Также в сэндвич входят несколько ломтиков из других пористых материалов, пропускающих ионы, но не дающих мигрировать материалам. Возможности аккумулятора лучше всего раскрываются за счёт увеличения площади поверхности электродов, поэтому сэндвич из анода, электролита и катода лучше делать как можно более тонким и с большей площадью соприкосновения. В итоге получится либо плоская батарейка (дешёвая ячейка в серебристом кожухе), либо призматическая батарейка (модная батарея, которую вы не встретите в ноутбуке), либо, если вы скрутите всё это в трубочку – цилиндрическая батарейка (к примеру, 18650, или АА). Возьмите несколько ваших аккумуляторных сэндвичей и сложите их вместе, перемежая разделителями.

Аккумулятор на миллион миль

Возможно, вы уже читали новость о том, что Tesla обещает выпустить батарейку, срока жизни которой хватит на «миллион миль». Реально работу выполняла группа исследователей из Университета Далхаузи в Галифаксе (Канада) по контракту с Tesla, однако они провели очень много тестов различных Li-ion аккумуляторов, чтобы найти наилучшее сочетание химических элементов, а также профилей использования и зарядки. «Батарейка на миллион миль» – это просто маркетинговая завлекалочка, описывающая исследования, оптимизирующие химические формулы батарей для увеличения их времени жизни. Сама работа заполнена техническим жаргоном, поэтому я все выходные изучал вопрос аккумуляторов, чтобы сделать вам выборку.

Учёные нацелились на такое использование автомобиля, которое предполагает постоянные поездки и зарядки батареи после почти полной разрядки. Первое, что стоит отметить касательно их формулы «на миллион миль» – она не характерна для поведения большей части сегодняшних водителей, средних владельцев авто, ездящих на работу и домой. Они используют термин 100% DOD, т.е. Такая ситуация подойдёт для грузовиков, такси и автобусов. «глубину разряда» – это когда батарейку используют до упора, а только потом заряжают, в отличии, к примеру, от смартфона, который ставят на зарядку каждый вечер вне зависимости от состояния аккумулятора.

Что обнаружилось: батарейки любят холод; горячие новые формулы

Они нашли, что очень большое значение имеет температура. Аккумулятор, работавший большую часть жизни при температуре в 20 ºC, будет жить дольше, чем тот, что работал при 40 ºC; однако батарейки, работавшие при высоких температурах, а затем попавшие в условия низких, теряют ёмкость с той же скоростью, что и батарейки, всегда работавшие при низкой температуре. Иначе говоря, при высокой температуре батарейка быстрее теряет ёмкость, а при низкой она теряет её не так быстро, и любая батарейка может перемещаться на этом графике туда и сюда без какого бы то ни было эффекта памяти. Более низкие температуры обеспечивают низкую скорость деградации на молекулярном уровне – меньшее количество трещин, дендритов, газовых карманов и т.п. Они очень сильно упирали на то, насколько важно держать всё при низкой температуре.

В химии NMC532 – это другое название для LiNi0. В предыдущих экспериментах исследователи много времени потратили на изучение других сочетаний химических элементах, но остановились на графитовых электродах NMC532 (как и большая часть научного сообщества). 3Co0. 5Mn0. Простым языком это значит, что катод в основном состоит из кристаллов лития, с добавлением небольшого количества никеля, марганца, кобальта и кислорода, а анод состоит из графита (хотя исследования графена выглядят многообещающе). 2O2.

Нужно ещё указать электролит. Однако характеристика NMC532/графит не является исчерпывающей для аккумулятора. В этой работе они проверяли несколько комбинаций растворителей. Электролит – это смесь из LiPF6, растворителей и добавок, с названиями слишком смешными для того, чтобы произносить их вслух – типа диметил карбоната или этилен сульфата. На основе предыдущих исследований им очень нравились две формулы добавок (2%FEC+1%LFO, and 2%VC+1%DTD), хотя они обнаружили, что при разных температурах они ведут себя по-разному, и предложили выбирать добавки согласно предполагаемому применению. Добавки также могут влиять на производительность ячейки, увеличивая скорость зарядки/разрядки за счёт укорачивания времени жизни, или наоборот. При производстве аккумуляторов обычно сначала делают сухие компоненты, к которым потом добавляют жидкий электролит (Sparkfun делали подробную статью с описанием производственного процесса).

В среднем со временем ионы лития, двигаясь туда и сюда, залезают в такие места, которые не позволяют им работать. Выбрав особую формулу и поддерживая низкую температуру работы, исследователи смогли минимизировать две основные причины деградации батареи; потерю лития и увеличение импеданса. Особенно вредными оказываются дендриты – эти кристаллы в виде острых литиевых иголок могут прокалывать сепараторы и закорачивать ячейку, которая затем разогревается и приводит к самоподдерживающейся реакции, и в итоге – к взрыву. Они могут оказаться электрически изолированными, группироваться в пластины, дендриты и поверхностные плёнки, реагировать с другими компонентами ячейки, и не участвовать в зарядке и разрядке. Импеданс увеличивается из-за коррозии электродов и потере полезной площади поверхности, из-за химических реакций, растрескивания или формирования резистивного поверхностного слоя, блокирующего электрод.

Их много, но по сути они сводятся к тому, что «атомы передвигаются туда, куда не надо»
Способы деградации батареи.

Оно заняло три года, для него потребовалось прогнать каждый аккумулятор через тысячи циклов зарядки и разрядки при помощи чрезвычайно точных зарядных и разрядных устройств, записывающих ёмкость батареи – и всё для того, чтобы получить наиболее полные данные. Одна из причин, по которой их исследование привлекло повышенное внимание – оно было скрупулёзным и открытым. То, что исследователи потратили столько времени на свою работу, говорит о более реалистичных результатах. Обычно довольно трудно измерять жизненный цикл батареи в ускоренном режиме; батареи подвергаются большим скоростям зарядки/разрядки, чем требуется в обычной жизни, и получают меньше времени на восстановление. Они также явно указали:

Это сделано для того, чтобы другие люди смогли воспроизвести эти ячейки и использовать их для собственных проверок. В отличие от отчётов, описывающих использование коммерческих ячеек, мы включили полное описание всех деталей своих батарей, включая состав электродов, состав электролита, используемых добавок и т.п.

Приятно для разнообразия видеть исследование с коммерческой поддержкой, выложенное в открытый доступ, да ещё и под лицензией Creative Commons.

Возможно, мы увидим постепенный переход на предложенные формулы, и мы хотели бы, чтобы больше влияния уделялось охлаждению, поскольку это значительно увеличивает время жизни батарей. Несмотря на открытость работы, мы, вероятно, не увидим в ближайшее время Li-ion аккумуляторов домашнего изготовления. Уверены, что если вам понадобится аккумулятор, Tesla вскоре сможет продать его вам с одной из своих гигафабрик.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть