Хабрахабр

[Перевод] Ноам Хомский: где искусственный интеллект пошел не туда?

Комментарий переводчика: Подробное интервью с легендарным лингвистом, вышедшее 6 лет назад, но ничуть не утратившее своей актуальности. Ноам Хомский —  «современный Эйнштейн», как его называют, делится своими соображениями об устройстве человеческого мышления и языка, искусственном интеллекте, состоянии современных наук. На днях ему исполнилось 90 лет, и это кажется достаточным поводом для публикации статьи. Интервью ведет молодой учёный-когнитивист Ярден Кац, он сам прекрасно разбирается в предмете, поэтому беседа очень содержательна, а вопросы столь же интересны, как и ответы.

Если задаться целью составить список величайших и самых недостижимых интеллектуальных задач, то задача «декодирования» самих себя — понимания внутреннего устройства наших умов и мозгов, и того, как архитектура этих элементов закодирована в нашем геноме — точно была бы на вершине. Однако различные области знаний, которые брались за эту задачу, от философии и психологии до информатики и нейронаук, охвачены разногласиями о том, какой подход — правильный.

Создание разумной системы, используя рукотворное оборудование, вместо нашего собственного «оборудования» в виде клеток и тканей, должно было стать иллюстрацией полного понимания, и повлечь за собой практические применения в виде умных устройств или даже роботов. В 1956 году ученый-информатик Джон МакКарти ввел в обиход выражение «искусственный интеллект» (ИИ) для описания науки изучения разума путем воссоздания его ключевых признаков на компьютере.

Ноам Хомский и его коллеги работали над тем, что впоследствии стало называться когнитивной наукой — открытие ментальных представлений и правил, которые лежат в основе наших познавательных и умственных способностей. Однако, некоторые из коллег МакКарти, из смежных дисциплин, были больше заинтересованы в том, как разум устроен у людей и у других животных. Скиннером, в которой поведение животных было сведено к простому набору ассоциаций между действием и его следствием в виде поощрения или наказания. Хомский и его коллеги опрокинули доминирующую в тот момент парадигму бихевиоризма, возглавляемую гарвардским психологом Б.Ф. Недостатки работ Скиннера в психологии стали известны из критического отзыва Хомского 1959 года на его книгу «Вербальное поведение», в котором Скиннер попытался объяснить языковые способности, используя бихевиористские принципы.

В концепции языка Хомского, с другой стороны, был акцент на сложности внутренних представлений, закодированных в геноме, и их развитии в ходе получения данных в сложную вычислительную систему, которую нельзя просто разложить на набор ассоциаций. Подход Скиннера делал упор на ассоциации между стимулом и реакцией животного — подход, легко представимый как эмпирический статистический анализ, предсказывающий будущее как следствие прошлого. «Языковая компетенция», как Хомский её называл, была частью генетического фонда организма, как и зрительная система, иммунная система, сердечно-сосудистая система, и нам следует изучать её точно так же, как мы изучаем остальные, более приземленные биологические системы. Бихевиористский принцип ассоциаций не мог объяснить богатство языкового знания, наше бесконечно творческое его использование, или почему дети быстро осваивают его из минимальных и зашумленных данных, которые им предоставляет окружающая среда.

Согласно Марру, сложную биологическую систему можно понимать на трех различных уровнях. Дэвид Марр, специалист в области нейронаук  - коллега Хомского по MIT — определил общий подход изучения сложных биологических систем (таких, как мозг) в своей нашумевшей книге «Зрение», и анализ языковой компетенции по Хомскому более-менее в этот подход укладывается. В случае зрительной системы, вводом может быть изображение, проецируемое на нашу сетчатку, а выводом может быть идентификация объектов на изображении нашим мозгом. Первый уровень («вычислительный уровень») описывает ввод и вывод системы, которые определяют задачу, выполняемую системой. Наконец, третий уровень («уровень реализации») описывает, как наше биологическое оборудование из клеток выполняет процедуру, описанную на алгоритмическом уровне. Второй уровень («алгоритмический уровень») описывает процедуру, при помощи которых ввод превращается в вывод, то есть: как изображение на нашей сетчатке может быть обработано, чтобы достичь задачи, описанной на вычислительном уровне.

Здесь упор на внутреннюю структуру системы, которая позволяет ей выполнить задачу, нежели на внешнюю ассоциацию между прошлым поведением системы и окружающей средой. Подход Хомского и Марра в понимании того, как действует наш разум, настолько далек от бихевиоризма, насколько это возможно. Цель — проникнуть в «чёрный ящик», который управляет системой, и описать его внутреннее устройство, примерно как программист может объяснить вам принцип работы хорошо проработанного программного продукта, а также проинструктировать, как запустить его на домашнем компьютере.

Это достаточно точно отражает ситуацию в когнитивной науке и психологии, но в других смежных науках бихевиористское мышление и не собирается умирать. Как сейчас принято считать, история когнитивной науки — это история очевидной победы подхода Хомского над бихевиористской парадигмой Скиннера — событие, о котором часто говорят как о «когнитивной революции», хотя сам Хомский отрицает такое название. Бихевиористские экспериментальные парадигмы и ассоцианистские объяснения поведения животных используются специалистами в области нейронаук, чья цель — изучение нейробиологии поведения лабораторных животных, таких как грызуны, где системный трехуровневый подход, предложенный Марром, неприменим.

В мае 2011 года, в честь 150-летней годовщины Массачусетского технологического института, состоялся симпозиум «Brains, Minds and Machines» («Мозги, умы и машины»), на котором ведущие ученые-информатики, психологи и специалисты в области нейронаук собрались для обсуждения прошлого и будущего искусственного интеллекта и его связь с нейронауками.

Как наш мозг создал наши когнитивные способности, и можно ли это когда-либо воплотить в машине? Подразумевалось, что собрание вдохновит всех междисциплинарным энтузиазмом по поводу возрождения того научного вопроса, из которого и выросла вся сфера искусственного интеллекта: Как работает разум?

Хомский раскритиковал сферу ИИ за принятие подхода, похожего на бихевиоризм, только в более современной, вычислительно сложной форме. Ноам Хомский, выступая на симпозиуме, не был преисполнен энтузиазма. Для Хомского новый ИИ — сфокусированный на использовании техник статистического обучения для лучшей обработки данных и выработки предсказаний на их основе — вряд ли даст нам общие выводы о природе разумных существ или о том, как устроено мышление. Хомский заявил, что опора на статистические техники для поиска закономерностей в больших объемах данные маловероятно даст нам объяснительные догадки, которых мы ждем от науки.

Эта критика вызвала подробный ответ Хомскому со стороны директора по исследованиям корпорации Google и известного исследователя в области ИИ, Питера Норвига, который защищал использование статистических моделей и спорил о том, что новые методы ИИ и само определение прогресса не так уж далеки от того, что происходит и в других науках.

Но с научной точки зрения, считает Хомский, данный подход неадекватный, или, говоря более жестко, поверхностный. Хомский ответил, что статистический подход может иметь практическую ценность, например, для полезной поисковой системы, и он возможен при наличии быстрых компьютеров, способных обрабатывать большие объемы данных. Мы не научили компьютер понимать, что означает фраза «физик сэр Исаак Ньютон», даже если мы можем построить поисковую систему, которая возвращает правдоподобные результаты пользователям, вводящим туда эту фразу.

Как компьютерная революция открыла путь анализу больших объемов данных, на котором и держится весь «новый ИИ», так и революция секвенирования в современной биологии породила цветущие поля геномики и системной биологии. Оказывается, похожие споры есть и у биологов, которые пытаются понять более традиционные биологические системы. Вместо мучительного изучения отдельных изолированных генов, мы теперь можем наблюдать поведение системы генов, действующих в клетках как единое целое, в сотнях, тысячах разных условий. Высокопроизводительное секвенирование — техника, благодаря которой миллионы молекул ДНК могут быть быстро и дешево прочитаны — превратило секвенирование генома из дорогостоящего предприятия длиной 10 лет в доступную обычным людям лабораторную процедуру.

К примеру, когда обычное лекарство не помогает определенной группе людей, ответ может быть в геноме пациентов, и там может быть некая особенность, не дающая лекарству сработать. Революция секвенирования только началась, и гигантский объем данных уже получен, принося с собой ажиотаж и новые многообещающие перспективы для новой терапии и диагностики человеческих болезней. Подразумевается, что при наличии достаточно развитых статистических инструментов и достаточно большого набора данных, интересные сигналы можно будет вытянуть из шума, который создается большими и малоизученными биологическими системами. Когда собрано достаточно данных, дающих сравнить релевантные особенности генома у таких пациентов, и правильно подобраны контрольные группы, могут появляться новые кастомизированные лекарства, ведущие нас к чему-то вроде «персонализированной медицины».

Успех таких явлений, как персонализированная медицина, и других следствий революции секвенирования и системно-биологического подхода, основывается на нашей способности работать с тем, что Хомский называет «масса необработанных данных» — и это помещает биологию в центр дискуссии, подобно той, которая была в психологии и искусственном интеллекте с 1960-х.

Великий генетик и нобелевский лауреат Сидней Бреннер однажды так её определил: «low input, high throughput, no output science» (в вольном переводе: «много шума из ничего, и никакой науки по итогам»). Системная биология тоже встречала скептицизм. Описывая популярный системный подход к картографированию мозговых схем, называемый Коннектомика, который пытается описать связи всех нейронов в мозге (то есть составляет диаграмму того, как одни нервные клетки соединены с другими), Бреннер назвал его «формой безумия». Бреннер, ровесник Хомского, который тоже участвовал в том симпозиуме по ИИ, был точно так же настроен скептически насчет новых системных подходов к пониманию мозга.

Непохожие внешне, системная биология и искусственный интеллект сталкиваются с тем же самым фундаментальным заданием обратного инжиниринга в высшей степени сложной системы, чье внутреннее устройство, по большей части, загадка. Остроумные нападки Бреннера на системную биологию и связанные подходы в нейронауке недалеки от критики Хомского в сторону ИИ. Нам следует опираться на мощные вычислительные возможности и статистические подходы, чтобы выделить сигнал из шума, или нам нужно искать более базовые принципы, лежащие в основе системы и объясняющие ее суть? Да, развивающиеся технологии предоставляют большой массив данных, связанных с системой, из которых только часть может быть релевантна. Эти дискуссии поднимают извечный вопрос философии науки: Что делает научную теорию или объяснение удовлетворительными? Желание собрать больше данных неостановимо, хотя и не всегда понятно, в какую теорию эти данные могут уложиться. Как определяется успех в науке?

Я хотел лучше понять критику Хомского в адрес искусственного интеллекта, и почему, как он считает, он двигается в неверном направлении. Мы сидели с Ноамом Хомским апрельским днем в довольно беспорядочной переговорке, спрятавшись в тайном уголке головокружительного здания Стата-центра MIT архитектуры Фрэнка Гери. Отчасти мотивацией интервью было то, что Хомского сейчас редко спрашивают о науке. Я также хотел изучить применение этой критики к другим научным областям, таким как нейронауки и системная биология, которые все работают с задачей обратного инжиниринга сложных систем — и где учёные часто обнаруживают себя посреди бесконечно расширяющегося моря данных. Другой причиной было то, что Хомский принадлежит к тому редкому и особенному виду интеллектуалов, который быстро вымирает. Журналистов слишком интересует его мнение о внешней политике США, Ближнем Востоке, администрации Обамы и других обычных темах. Хомский — особенный, поскольку он превращает это различие в старое и ненужное клише. С момента публикации знаменитого эссе Исайи Берлина, любимым развлечением в академической среде стало помещать различных мыслителей и ученых в континуум «Лисы-Ежа»: Ёж — дотошный и специализированный, нацеленный на последовательный прогресс в четко очерченных рамках, против Лисы, более быстрого, движимого идеями мыслителя, который скачет от вопроса к вопросу, игнорируя рамки предметной области и применяя свои навыки там, где они применимы. Работа Хомского оказала огромное влияние на несколько сфер помимо его собственной, включая информатику и философию, и он не уходит от обсуждения и критики влияния этих идей, что делает его особенно интересным для интервьюирования человеком. У Хомского глубина не идет взамен гибкости или широты охвата, хотя, по большей части, он посвятил всю свою раннюю научную карьеру изучению определенных тем в лингвистике и когнитивных науках.

На заре искусственного интеллекта люди с оптимизмом смотрели на прогресс в этой области, но всё оказалось иначе. Я хочу начать с очень простого вопроса. Если спросить специалистов в области нейронаук, почему понять мозг так сложно, они дадут вам совершенно не удовлетворяющие интеллектуально ответы: в мозге миллиарды клеток, и мы не можем считывать их все, и так далее.

Хомский: В этом что-то есть. Почему задача так сложна? Величайшего прогресса достигают науки, которые изучают самые простые системы. Если вы посмотрите на развитие науки, все науки как континуум, но они разделяются на отдельные области. Но одна из причин в том, что у физиков есть преимущество, которого нет ни в одной другой науке. Возьмите, например, физику — в ней огромный прогресс. Если что-то становится слишком сложным, они передают это кому-то другому.

Химики, если для них молекула слишком большая или система становится слишком большой, отдают её биологам. Например, химикам?

Хомский: Если молекула слишком большая, вы отдаёте её химикам. Так что не всё, что говорят в нейронауках, полностью неверно. А если для них слишком большая, они отдают психологам, и в конце концов она оказывается в руках литературных критиков, и так далее.

Есть довольно новая книга очень хорошего нейроучёного-когнитивиста Рэнди Галлистела совместно с Адамом Кингом («Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience» — прим. Но может быть, — и с моей точки зрения это очень вероятно, хотя специалистам в области нейронаук это не нравится — что нейронаука последние пару сотен лет идёт по ложному пути. В результате, они искали явления, обладающие свойствами ассоциативной психологии. перев.), в которой он спорит — на мой взгляд, правдоподобно — с тем, что нейронаука развивалась, будучи увлечённой ассоцианизмом и связанными с ним представлениям о том, как устроены люди и животные.

[Теория, приписываемая Дональду Хеббу: ассоциации между стимулом окружающей среды и реакцией на стимул могут быть закодированы через усиление синаптических связей между нейронами — прим. Как с хеббовой пластичностью? ред.]

Галлистел годы потратил на то, чтобы объяснить: если вы хотите как следует изучить мозг, вам нужно, подобно Марру, вначале спросить, какие задачи он выполняет. Хомский: Да, как усиление синаптических связей. Так вот, если вы хотите изучить, скажем, неврологию муравья, вы спрашиваете, что делает муравей? Поэтому он в основном интересуется насекомыми. Посмотрите на пчёл: их навигация требует довольно сложных вычислений, включающих положение солнца, и так далее. Оказывается, муравьи делают довольно сложные вещи, например, построение пути. Таким образом, вам нужно посмотреть на вычислительные атомарные единицы.  Но в целом, с чем он спорит: если вы возьмете когнитивные способности животного или человека, это вычислительные системы. Это минимальные вычислительные единицы, так что вам нужно поискать их в мозгу. Возьмем машину Тьюринга, это самая простая форма вычисления, вам нужно найти атомы, которые имеют свойства «читать», «писать» и «адрес». Вам нужно начать вот с чего: посмотреть, что там уже есть и что работает, и вы это можете увидеть с наивысшего уровня в иерархии Марра. Вам никогда их не найти, если вы будете искать усиление синаптических связей или свойства полей, и так далее.

Вместо этого, они помещают мышь в лабораторную задачу обучения, и записывают как можно больше нейронов, или узнают, нужен ли ген Х для обучения задаче, и так далее. Правильно, но большинство нейроучёных не сидят и не описывают вводы и выводы феномена, который они изучают. Такого рода утверждения вытекают из их экспериментов.

Хомский: Это так…

Есть ли в этом концептуальная ошибка?

Но если там действительно происходит какой-то род вычислений, задействующий атомарные единицы, вы их не найдёте таким способом. Хомский: Ну, вы можете получить полезную информацию. перев.). Это примерно как искать потерянные ключи под другим фонарем, только потому, что там светлее (отсылка к известному анекдоту — прим. Так что когда вы изучаете зрение, говорит он, вы вначале спрашиваете, какие вычислительные задачи решает система. Это дискуссионный вопрос… Я не думаю, что позиция Галлистела широко воспринята нейробиологами, но это правдоподобная позиция, и она сделана в духе анализа Марра. Иначе, вы можете никогда ничего не найти. Затем вы ищете алгоритм, который мог бы осуществлять эти вычисления, и в конце концов вы ищете механизмы, которые позволяют произвести работу такого алгоритма. Люди стараются изучать то, что знают, как изучать — я имею в виду, это выглядит разумно. Есть много примеров этого, даже в точных науках, и совершенно точно в гуманитарных. С другой стороны, хорошо бы знать, в правильном ли направлении двигаешься. У вас есть определенные техники экспериментов, у вас есть определенный уровень понимания, вы пытаетесь раздвигать границы возможного — и это хорошо, я не критикую, люди делают, что могут. И может так случиться, что если взять за основу точку зрения Марра-Галлистела, которой я лично симпатизирую, то вы будете работать по-другому, искать эксперименты другого рода.

А если мы возьмем конкретный пример новой области нейронаук под названием Коннектомика, где цель — найти диаграмму связей очень сложных организмов, найти соединения всех нейронов коры мозга человека или мыши. Итак, я думаю, ключевая идея Марра в том, чтобы, как вы сказали, найти подходящие атомарные единицы для описания проблемы, иначе говоря, подходящий «уровень абстракции», если так можно сказать. Защитники этой области не останавливаются и не спрашивают, является ли диаграмма связей подходящим уровнем абстракции — может, и не является. Этот подход был раскритикован Сиднеем Бреннером, который в большой степени [исторически] один из его авторов. А каково ваше мнение об этом?

Например, здесь, в MIT, была междисциплинарная программа по изучению нематоды (круглого червя — прим. Хомский: Есть гораздо более простые вопросы. elegans на протяжении нескольких десятилетий, и, как я понимаю, даже с этим крошечным существом, у которого вы знаете всю диаграмму связей, там 800 нейронов или около того … перев.) C.

Я думаю, 300..

elegans] собирается делать. Хомский: … Всё равно, вы не можете предсказать, что оно [нематода C. Может быть, вы просто ищете не там.

Итак, «Старый добрый искусственный интеллект» (GOFAI), как его называют теперь, основывался на строгих формализмах в традиции Готлоба Фреге и Бертрана Рассела, на математической логике, к примеру, или её ответвлениях, как немонотонные рассуждения, и так далее. Я бы хотел перейти на тему различных методологий в ИИ. Мой вопрос: как можно объяснить этот сдвиг, и является ли это шагом в нужном направлении? С точки зрения истории науки, интересно, что эти подходы были практически полностью исключены из мейнстрима и были заменены — в сфере, которая теперь называет себя ИИ — вероятностными и статистическими моделями.

Один из тезисов у него был: ИИ и робототехника дошли до стадии, где вы можете делать действительно полезные вещи, таким образом внимание переключилось на практическое применение, и поэтому были отложены в стороны более фундаментальные научные вопросы, просто потому, что все захвачены успехом технологии и достижением определенных целей. Хомский: Я слушал доклад Пэта Уинстона об этом год назад.

То есть всё ушло в инженерию….

Я должен сам признать, что я был очень скептично настроен по поводу этих оригинальных работ (в новой парадигме вероятностного ИИ — прим. Хомский: Да, так и есть… И это вполне можно понять, но, конечно, это уводит людей в сторону от изначальных вопросов. Мне казалось, что всё было чересчур оптимистично, предполагалось, что вы сможете достичь результатов, которые требуют реального понимания едва изученных систем, и что вы не можете прийти к их пониманию, просто вбросив туда сложную машину. перев.).   Если вы это попробуете делать, вы приходите к концепции самоподкрепляющегося успеха, потому что вы получаете результат, но это очень сильно отличается от того, как это делается в науках.

А «правильно» — это взять множество видеозаписей о том, что происходит во внешнем мире, и скормить их самому большому и быстрому компьютеру, гигабайты данных, и сделать комплексный статистический анализ — ну, вы понимаете, байесовские методы, туда-сюда. Например, возьмем предельный случай, предположим, что кто-то хочет упразднить факультет физики, и сделать это правильно. ред) — и вы получите что-то вроде предсказания о том, что случится у вас за окном в следующую секунду. (современный подход к анализу данных, основанный на теории вероятности — прим. Ну, если успех определяется в том, чтобы получить наиболее близкую аппроксимацию на массе хаотических необработанных данных, тогда, конечно, это гораздо более лучший способ, чем как обычно работают физики — ну, знаете, никаких больше мысленных экспериментов об идеально ровной поверхности и так далее. Фактически, вы получите гораздо лучшего качества предсказание, чем физический факультет мог бы вам дать. Но вы не получите тот уровень понимания, который всегда был целью науки — вы лишь получите аппроксимацию к тому, что происходит.

Предположим, вы хотите предсказать погоду на завтра. И так делается везде. Вы получаете довольно хорошую аппроксимацию того, какая будет завтра погода. Один способ: ОК, у меня есть статистические априорные вероятности, например: высокая вероятность, что завтра погода будет такая же, как была вчера в Кливленде, и я использую её, и ещё некоторое влияние окажет положение солнца, и это я тоже использую, итак, вы сделали несколько таких предположений, вы проводите эксперимент, вы смотрите на результаты снова и снова, вы корректируете байесовскими методами, вы получаете лучшие априорные вероятности. И это просто две разных концепции того, что такое успех, что такое достижение. Но это не то, что делают метеорологи — они-то хотят понять, как это работает. В вычислительной когнитивной науке, примененной к языку, концепт успеха именно такой. В моей науке, науке о языке, это сплошь и рядом. То есть вы получаете всё больше данных, лучше статистику, получаете всё более точную аппроксимацию к какому-то гигантскому корпусу текста, например, все архивы Wall Street Journal — но вы не узнаёте ничего о языке.

Это просто две разных концепции науки. Совершенно другой подход, который я считаю правильным — попробовать посмотреть, можете ли вы понять, в чем фундаментальные принципы и их связь с ключевыми свойствами, и увидеть, что в реальной жизни, вам будут мешать тысячи разных переменных — вроде того, что происходит сейчас за окном — и вы разберетесь с ними позже, если захотите более точной аппроксимации. Аппроксимация необработанных данных — это вроде бы новый подход, но вообще-то, подобные вещи существовали и в прошлом. Вторая — это то, чем наука была со времен Галилея, это современная наука. Но я думаю, что это ведет области наподобие вычислительной когнитивной науки в направлении, может быть, практической применимости… Это новый подход, который ускорен существованием больших объёмов памяти, очень быстрой обработки, которые позволяют вам делать вещи, которых вы раньше не могли сделать вручную.

… в инженерии?

Да, может быть, даже эффективной инженерии. Хомский: … Но уводит от понимания. Когда я попал в MIT в 1950-е, это был инженерный вуз. И это, кстати, интересно, что произошло с инженерией. Они обучали инженеров всяким трюкам, которые они могли бы использовать. Там был очень хороший факультет математики, физики, но они были обслуживающими факультетами. Но начиная с 1960-х и по сей день, всё совсем по-другому. На факультете электронной инженерии вы учились, как собрать схему. И потом, возможно, вы изучаете немного о том, как её применять. Неважно, какая ваша инженерная специальность — вы изучаете всё те же самые базовые науки и математику. Он стал возможным, благодаря тому факту, что первый раз в истории человечества базовые науки, как физика, действительно могли помочь инженерам. Но это совсем другой подход. Поэтому вы изучаете фундаментальную науку, которая будет применима, независимо от того, что будет дальше. Кроме того, технологии начали очень быстро изменяться, поэтому мало смысла изучать технологии сегодняшнего дня, если через 10 лет они всё равно изменятся. Итак, в последнем столетии, опять же, в первый раз, биологии было что сказать практической медицине, и поэтому вам необходимо было знать биологию, если вы хотели стать врачом, плюс технологии менялись. И примерно то же самое случилось и в медицине. Я думаю, что это переход от чего-то наподобие искусства, которое вы учитесь применять — аналогией будет сопоставление непонятных вам данных, каким-то особым способом, и может быть даже построение чего-то работающего — переход к науке, которая появилась в Новое время, грубо говоря, наука Галилея.

Возвращаясь к теме байесовской статистики в моделях языка и познания. Понятно. Был известный спор с вашим участием, вы утверждали, что говорить о вероятности предложения неразумно само по себе…

Хомский: … Ну, вы можете получить число, если захотите, но оно ничего не значит.

Но кажется, что есть почти тривиальный способ унифицировать вероятностный метод, если предположить, что есть очень богатые внутренние ментальные представления, состоящие из правил и других символических структур, и цель теории вероятности просто в том, чтобы связать зашумлённые, фрагментарные данные нашего мира с этими внутренними символическими структурами. Оно ничего не значит. Но теория вероятности работает как клей между зашумлёнными данными и очень богатыми ментальными представлениями.

Хомский: Нет ничего плохого в теории вероятности, статистике. И от вас не требуется говорить что-то о том, как эти структуры появились — они могли существовать изначально, или там подстраиваются некоторые параметры — зависит от вашей концепции.

Но есть ли у неё роль?

Но вопрос, для чего вы её используете? Хомский: Если вы её можете использовать, прекрасно. Есть ли смысл понимать, что происходит снаружи, за окном? Прежде всего, самый первый вопрос, есть ли какой-то смысл в понимании зашумлённых данных?

Это один из примеров Марра: мы встречаем зашумлённые данные постоянно, начиная с нашей сетчатки и до... Но нас ведь бомбардируют этими данными.

Но вот, что он говорит: Давайте спросим себя, как биологическая система выбирает из шума важное. Хомский: Это так. Она говорит: я сейчас буду искать на изображении вот это, вот это и это. Сетчатка не пытается дублировать входящий шум. Новорожденный ребенок окружен разнообразным шумом, как говорил Уильям Джеймс, «цветущий и жужжащий беспорядок». Это примерно как с обучением языку. Однако ребенок каким-то образом, немедленно, рефлекторно, выбирает из шума отдельную часть, которая связана с языком. Если обезьяна, котенок, птица, кто угодно, слышит этот шум, на этом всё и заканчивается. Как он это делает? Это первый шаг. Он ищет конкретную вещь. Не при помощи статистического анализа, потому что обезьяна тоже может в грубой форме проводить тот же самый вероятностный анализ. Так вот, выходит, что действительно есть нейронные схемы, которые реагируют на определенные виды ритма, который и проявляется в языке — как длина слогов и так далее. Итак, психолингвисты, нейролингвисты и прочие пытаются открыть конкретные детали вычислительной системы и нейропсихологии, которые каким-то образом связаны с конкретными аспектами окружающей среды. И возвращаясь к Галлистелу и Марру, у мозга есть внутри некая вычислительная система, которая говорит: «Окей, вот что я буду делать с этими штуками», и примерно через девять месяцев типичный ребенок уже исключил — убрал из своего запаса — те фонетические различия, которых нет в его собственном языке. И есть некоторые свидетельства того, что одна из первых вещей, которые ищет мозг ребенка — это ритмические структуры. Но, скажем, японский ребенок в возрасте девяти месяцев не будет реагировать на различие «Р» и «Л», оно как бы отсеялось. То есть, получается, с самого начала любой ребенок настроен на любой язык. Вы можете придумать анти-язык, в котором ребенок никогда не сможет это сделать, и еще много чего интересного. Так что система рассматривает множество возможностей и ограничивает их только до тех, которые являются частью языка, а это уже вполне узкое множество. Видно, что преимущественно используются более абстрактные понятия расстояния и это не линейное расстояние, и этому можно найти нейрофизиологическое подтверждение. Например, если говорить о более абстрактной стороне языка, на настоящий момент есть твердое свидетельство того, что такая простая вещь, как линейный порядок слов — что идёт за чем — не входит в синтаксическую и семантическую вычислительную системы, их устройство просто таково, что они не ищут линейный порядок. Люди смогут разгадать эту головоломку, но по-видимому, стандартные языковые участки мозга не активируются — активируются другие зоны, то есть люди воспринимают это как головоломку, а не как языковую задачу. Можно привести пример: если придумать искусственный язык, в котором используется линейный порядок слов, как, к примеру, вы делаете из утвердительного предложения отрицательное, делая что-то с третьим по счету словом. И чтобы её разгадать, людям приходиться напрягаться больше…

Вы считаете это убедительным свидетельством того, что активация или отсутствие активации участка мозга...

Но это свидетельство такое, что вы смотрите со стороны лингвистики, как работают языки — в них нет таких вещей, как третье слово в предложении. Хомский: … Это свидетельство, и конечно, вам хочется большего. И вот действие рефлекса. Возьмем простое предложение: «Инстинктивно летающие орлы плавают», здесь «инстинктивно» связано со словом «плавают», а не со словом «летающие», даже хотя всё предложение и не имеет смысла. Это гораздо более сложное вычисление. «Инстинктивно», наречие, не ищет ближайший глагол, оно ищет структурно более подходящий глагол. Линейный порядок — это очень простое вычисление, но оно никогда не используется. Но это единственное вычисление, которое вообще используется. И когда вы смотрите на более сложные структуры, вы находите всё больше и больше подобного. Есть множество свидетельств наподобие этого, и очень мало нейролингвистических свидетельств, но они указывают в одном и том же направлении.

Вы не сможете этого найти при помощи статистического анализа данных. Это, по моему мнению, способ понять, как система работает на самом деле, как это произошло с системой зрения в лаборатории Марра: люди наподобие Шимона Ульмана открыли довольно примечательные вещи вроде принципа ригидности. Потом вы ищете в нейрофизиологии и смотрите, можете ли что-то найти, что выполняет эти вычисления. Он нашёл это при помощи тщательно спланированных экспериментов. Просто работать с сырыми данными — вы никуда с этим не придете, и Галилей бы не пришёл. Я думаю, что то же самое в языке, то же самое в изучении наших арифметических способностей, планирования, почти везде. Я имею в виду: зачем изучать, как шар катится по идеально ровной плоскости без трения, ведь их не существует. Фактически, если к этому вернуться, в 17 веке людям, таким как Галилей и другие великие ученые, было непросто убедить Национальный научный фонд тех времен — а именно, аристократов — в том, что в их работах был смысл. Если бы вы попробовали изучать рост цветов в те времена, вы бы, возможно, получили статистический анализ того, как всё устроено. Почему не изучать, как растут цветы?

И я думаю, что можно кое-чему научиться из истории науки. Важно помнить, что в когнитивной науке мы ещё в до-Галилеевой эпохе, мы только начинаем делать открытия. Вот как они это делали — конечно, никто ничего не знал о фотосинтезе — они брали кучу земли, и нагревали её так, чтобы вся вода испарялась. Один из основных экспериментов в истории химии в 1640 году или около того, когда кто-то доказал, к удовольствию всего научного мира вплоть до Ньютона, что воду можно превратить в живую материю. Когда всё готово и ивовое дерево выросло, вы опять берете землю и выпариваете из неё воду — так же, как и раньше. Её взвешивали, вставляли в неё ветку ивы, и поливали сверху водой, измерив объём этой воды. Это эксперимент, и он вроде бы даже верный, но вы не знаете, что вы ищете. Таким образом, вы показали, что вода может превратиться в дуб или что-то ещё. Тогда вы можете повторить эксперимент и понять, что происходит. И это было неизвестно до тех пор, пока Пристли не открыл, что воздух — это компонент мира, в нем есть азот, и так далее, и вы узнавали про фотосинтез и прочее. И вы ещё больше уйдёте не в ту сторону, если попробуете изучать рост деревьев так: просто взять массив данных о том, как деревья растут, скормить его мощному компьютеру, провести статистический анализ и получить аппроксимацию того, что произошло. Но вас легко может увести не в ту сторону эксперимент, который кажется успешным из-за того, что вы недостаточно хорошо понимаете, что вам следует искать.

В биологии, расцениваете ли вы работу Менделя как успешный пример того, как можно взять зашумлённые данные — важно, что численные — и перескочить к постулированию теоретического объекта…

Хомский: … И выбрасывая огромное количество данных, которые не сработали.

… Но увидев соотношение, которое имело смысл, выработать теорию.

Он позволил теории управлять данными. Хомский: Да, он делал всё правильно. И он, конечно, говорил о вещах, которые никто не мог найти, как нельзя было найти единицы, существование которых он доказывал. Были ещё данные, противоречащие теории, которые более-менее отбрасывались, ну вы понимаете — которые обычно в статью не включишь. Так же и в химии. Но да, именно так работает наука. Потому что её нельзя низвести до физики. Химия, до моего детства, не так уж давно, рассматривалась как наука о вычислениях. Атом Бора так воспринимали. Поэтому это просто способ вычислить результат экспериментов. Когда появилась квантовая физика, её стало возможно объединить с никак не изменившийся химией. Способ вычислить результат экспериментов, но это не может быть настоящей наукой, потому что её нельзя низвести до физики, и внезапно, это оказалось правдой, потому что физика ошибалась. Правильный проект был — посмотреть, как можно объединить эти два взгляда на мир. То есть весь проект с редукцией был просто неверным. Может быть, ровно то же самое с психологией и нейронауками. И оказалось, что, сюрприз — их объединили радикальные изменения в нижестоящей науке. Я имею в виду, нейронаука даже близко не такая развитая сейчас, как физика век назад.

И это будет отходом от редукционистского подхода с поиском молекул....

Фактически, редукционистский подход ошибался уже несколько раз. Хомский: Да. Но унификация может отличаться от редукции, поскольку в основной науке может быть изъян, как в случае с физикой и химией, и я подозреваю с большой степенью вероятности то же самое в случае нейронауки и психологии. Унификационный подход имеет смысл. Если Галлистел прав, то будет смысл утверждать, что да, их можно объединить, но с иным подходом к нейронауке.

Следует стремиться к скорейшей унификации, или лучше эти области пока будут развиваться параллельно?

Это как поиски общей теории мира. Хомский: Унификация — это такое интуитивное стремление к идеалу, часть научной мистики, если угодно. Унификация может не проявиться через редукцию, и часто так и происходит. Может быть, её не существует, может быть, разные части работают по-разному, но есть предположение, пока мне не дали убедительного опровержения, мое предположение такое, что существует общая теория мира, и моя задача — попробовать найти её. Вот это ведущая логика подхода Дэвида Марра: то, что вы открываете на вычислительном уровне, необходимо объединить с тем, что вы однажды найдете на уровне механизмов, но, может быть, не в тех терминах, в которых мы сейчас понимаем эти механизмы.

И у Марра подразумевается, что вы не можете работать на всех трех уровнях параллельно [вычислительный, алгоритмический и имплементационный уровень], нужно движение сверху вниз, и это очень строгое требование, учитывая, что в науке обычно не так.

Например, открытие чего-то нового о механизмах может привести вас к смене концепции вычислений. Хомский: Не мог он сказать такого, что всё должно быть жестким. Но я думаю, что в грубом приближении, картина верна. Логический порядок не обязательно совпадает с порядком исследований, поскольку в исследованиях всё происходит в одно и то же время. Хотя должен сказать, что концепция Марра была разработана для систем ввода…

Обрабатывающих информацию систем …

Там есть данные — это система обработки данных — и в ней что-то происходит. Хомский: Да, как зрение. Возьмем вашу способность к арифметическим операциям… И это не очень хорошо работает для когнитивных систем.

Она очень слабая, но ладно...

Но это внутренняя способность, вы знаете, что ваш мозг — управляющий узел чего-то наподобие машины Тьюринга, и у него есть доступ к внешним данным, таким как память, время… Теоретически, вы можете что угодно умножить, но практически, это, разумеется, не так. Хомский: Хорошо [смеется]. Вы можете говорить о вычислительном уровне: может быть, правила внутри меня, это аксиомы Пеано [прим. Если вы попробуете изучить, что за внутренняя система у вас, то иерархия Марра не очень хорошо работает. Теоретически, хотя мы и не знаем как, вы можете говорить только о нейрофизиологическом уровне, никто не знает как, но нет реального алгоритмического уровня. ред.: математическая теория (названная в честь итальянского математика Джузеппе Пеано), описывающая ядро основных правил арифметики и натуральных чисел, из которой можно вывести множество полезных арифметических фактов] или что-то ещё, неважно — это вычислительный уровень. Непонятно, как понять природу системы знания: там нет алгоритма, потому что там нет процесса. Потому что нет исчисления знания, это просто система знания. Это можно сделать, только используя систему знания, в которой есть процесс, но это уже будет что-то совсем другое.

Но раз мы делаем ошибки, это значит, что процесс идет неправильно?

Но внутренняя система сама по себе не процесс, поскольку у нее нет алгоритма. Хомский: Это процесс использования внутренней системы. Если вы возьмете аксиомы Пеано и правила вывода, они определяют все арифметические вычисления, но там нет алгоритма. Возьмите обычную математику. Вы берете теорему и смотрите, можно ли вывести лемму, и если это работает, то смотрите, получается ли основать эту лемму на чем-то, и в конце получаете доказательство — геометрический объект. Если вы спросите, как их применяет специалист по теории чисел, то там, конечно, много вариантов: например, вы начинаете не с аксиом, а с правил вывода.

Но это фундаментально иная активность, отличная от сложения малых чисел у меня в голове — и конечно, у меня в голове есть какой-то алгоритм.

Есть алгоритм у этого процесса в обоих случаях. Хомский: Не обязательно. Вы не спрашиваете, какой процесс определяют аксиомы Пеано и правила вывода, там нет процесса. Но нет алгоритма самой системы, это категориальная ошибка. И это может быть сложный процесс, и это верно в случае с вашими вычислениями. Может существовать процесс их использования. Но если вы используете вашу внутреннюю систему, вопрос возникает, и вы можете выполнять умножение разными способами. Внутренняя система, которая у вас есть — здесь вопрос процесса не возникает. Это алгоритм сложения — на самом деле, так меня учили в детском саду. Например, если вы складываете 7 и 6, один алгоритм говорит: «Я посмотрю, сколько нужно, чтобы добраться до 10» — он берет 3, и теперь осталось ещё 3, так что я буду двигаться от 10 и добавлю ещё 3, и будет 13. Это один способ сложения чисел.

Это алгоритмы выполнения процесса когнитивной системы в вашей голове. Но есть и другие способы складывать — нет правильного алгоритма. Вы можете спросить про вычислительный уровень, про уровень механизмов. И вот уже для этой системы вы не спрашиваете про алгоритмы. То же и с языком. Но алгоритмический уровень для этой системы не существует. Там есть система, которая определяет звучание и смысл бесконечного массива возможных предложений. Язык — это как арифметическая способность. Так же и нет вопроса о том, какая формальная система арифметики говорит вам, как доказывать теоремы. Но нет вопроса о том, какой там алгоритм. Но важно концептуально обозначать эти различия. Использование системы — это процесс, и вы можете изучать его в терминах уровней Марра.

Просто кажется невероятной задачей перейти с теории вычислительного уровня, как аксиомы Пеано, к Маррову уровню 3 ...

Хомский: механизмов…

… механизмов и реализаций ...

И… Хомский: Да.

… без алгоритма, по меньшей мере.

Может быть, информация о том, как система используется, и расскажет вам что-то о механизмах. Хомский: Я думаю, это неверно. Даже не глядя на процесс, в котором эта система используется. Но некий высший разум — может быть, выше, чем наш — увидит, что есть внутренняя система, а у неё есть физиологическая основа, и можно будет её изучить, эту физиологическую основу. Но концептуально это другая задача. Может быть, наблюдение процесса дает вам полезную информацию о том, куда двигаться. Так что, может быть, лучший способ изучить связь между аксиомами Пеано и нейронами — это понаблюдать за тем, как математики доказывают теоремы. Вопрос в том, какой способ вести исследования лучше. Реальный конечный результат будет понимание системы мозга, её физиологическая основа, без отсылок к какому-либо алгоритму. Но это только потому, что я дам вам вспомогательную информацию. Возможно, как наклонные поверхности могут вам сказать кое-что о скорости падения, но если вы посмотрите на законы Ньютона, в них ничего не говорится о наклонных плоскостях. Алгоритмы — это всё к процессам, которые их используют, и они могут вам помочь получить ответы.

Логика изучения когнитивных и языковых систем с использованием подхода Марра понятна, но поскольку вы не признаёте языковую компетенцию генетической особенностью, вы можете применить эту логику к другим биологическим системам — иммунная система, сердечно-сосудистая система... Хорошо.

Вы можете сказать то же самое про иммунную систему. Хомский: Точно, я думаю, это очень похоже.

И может быть, даже будет проще так сделать с этими системами, чем с мышлением.

Вы можете так сделать с пищеварительной системой. Хомский: Но вы будете ожидать других ответов. Вряд ли он будет изучать, что происходит, когда у вас желудочный грипп, или когда вы съели бигмак, или ещё что-то. Предположим, кто-то изучает пищеварительную систему. Один способ изучения пищеварительной системы — это собрать всевозможные данные о том, что делает пищеварительная система в различных обстоятельствах, ввести данные в компьютер, провести статистический анализ — что-то вы получите. Вернемся к фотографированию того, что происходит за окном. Он хочет с самого начала абстрагироваться от того, что считается — возможно, ложно, ведь всегда можно ошибиться — нерелевантными переменными, вроде того, есть ли у вас желудочный грипп. Но это не будет то, чем занимается биолог.

Но это как раз то, что делают биологи: они берут больных людей с больной системой пищеварения, сравнивают их со здоровыми, и измеряют молекулярные свойства.

Они уже знают много об устройстве пищеварительной системы перед тем, как сравнивать пациентов. Хомский: Они это делают на более продвинутой стадии. Иначе они не будут знать, что сравнивать, и почему один болен, а другой нет.

Это очень хорошо финансируемый подход, ведь вы заявляете, что изучаете больных. Они опираются на статистический анализ, чтобы выявить отличительные особенности.

Это как добиваться финансирования лингвистики словами о том, что это, возможно, поможет лечить аутизм. Хомский: Это вполне может быть способом получения финансирования. Но логика поиска в том, чтобы начать изучение системы, абстрагируясь от того, что вы, с высокой степенью вероятности, полагаете нерелевантным шумом. Это вообще другой вопрос [смеётся]. Вы пытаетесь найти базовую сущность, и затем задаетесь вопросом, а что случится, если мы привнесем что-то ещё, тот же желудочный грипп.

Если вы спросите, какую вычислительную задачу решает мозг, то вроде бы есть ответ, он работает примерно как компьютер. Всё равно кажется, что есть сложность в применении уровней Марра к системам такого типа. Но если вы спросите, какую вычислительную проблему решает лёгкое, об этом даже сложно подумать — это очевидно не задача обработки информации.

При этом могут быть причины думать, что мышление является таковым. Хомский: Это так, но нет причины полагать, что вся биология — вычислительная. И фактически Галлистел не говорит, что всё, что есть в теле, нужно изучать через поиск единиц чтения/записи/адресации.

Эти системы эволюционировали совместно, повторно используя похожие части, молекулы, траектории. Это просто кажется контринтуитивным с точки зрения эволюции. Клетки — это вычислительные устройства.

Вы изучаете иммунную систему и зрительную систему, но вы не ожидаете найти одинаковый ответ. Хомский: Вы не изучаете лёгкое, задавая вопросы о том, что вычисляют клетки. Они действуют по разным законам. Организм — в высшей степени модульная система, в нем множество сложных подсистем, которые более или менее внутренне объединены. Вы не можете предполагать, что это всё просто огромная каша из объектов, ведущих себя одинаково. Биология — также модульна.

Конечно, нет, но я имею в виду, что можно было бы применить тот же самый подход для изучения каждого из модулей.

Некоторые из модулей могут быть вычислительными, некоторые — нет. Хомский: Не обязательно, ведь модули разные.

Как вы думаете, адекватная теория, которая обладала бы объясняющей, нежели лишь предсказательной силой через статистику… Какой может быть адекватная теория этих систем, которые не являются вычислительными —  мы вообще можем их понять?

Вы можете многое понять о том, например, что заставляет эмбрион превратиться в цыпленка, а не, скажем, в мышь. Хомский: Разумеется. Даже с нематодой, совершенно неочевиден тот факт, что всё определяется просто нейронной сетью, и есть данные исследований на этот счёт. Это очень запутанная система, включающая все виды химических взаимодействий и других вещей. Нужно вглядываться в каждую систему отдельно. Нужно смотреть на сложные химические взаимодействия, которые происходят в мозгу, в нервной системе. Но они могут очень легко оказаться связаны с тем, решаете ли вы поднять руку или опустить. Эти химические взаимодействия могут быть не связаны с вашими арифметическими способностями — скорее всего, так.

Хотя, если вы станете изучать химические взаимодействия, это вас приведет к тому, что вы назвали повторным описанием феномена, только другими словами.

Потому что возможно, они очень важно, критически, связаны. Хомский: Или к объяснению.

Вы просто нашли рычажок, и нажимаете на него. Но если вы делаете объяснение в терминах «вещество X должно быть активировано» или «ген Х должен присутствовать», вы ведь на самом деле не объясняете, как устроен организм.

Хомский: Но затем вы смотрите дальше, и находите, что заставляет этот ген так работать в таких условиях, или работать иначе в других условиях.

Но если гены — неверный уровень абстракции, то вы в пролёте.

А может, и нет. Хомский: Тогда вы не получаете правильный ответ. Есть различные виды процессов, происходящих в клетке. Например, общеизвестно, что сложно просчитать, как организм развивается из генома. Никогда не ясно, поэтому и нужно это изучать. Если вы просто посмотрите на действие гена, вы можете оказаться на неверном уровне абстракции. Я не думаю, что есть алгоритм для ответов на такие вопросы.

Вы критиковали очень интересную точку зрения, которую назвали «филогенетический эмпиризм». Хотелось бы сместить беседу в сторону эволюции. Она просто утверждает следующее: итак, мышление такое, какое оно есть, потому что были выбраны такие адаптации к окружающей среде. Вы критиковали эту позицию за недостаток объяснительной силы. Вы утверждали, что это ничего не объясняет, поскольку всегда можно апеллировать к этим двум принципам — мутации и отбору. Выбраны естественным отбором.

Может так случиться, что развитие ваших арифметических способностей выросло из случайных мутаций и отбора. Хомский: Ну, вы можете и махнуть на них рукой, но они могут оказаться правы. Если окажется, что это так, ну и прекрасно.

перев.). Это звучит как трюизм (общеизвестная истина — прим.

Трюизмы — это истина [смеется]. Хомский: А я и не говорю, что это неверно.

Но они ничего не объясняют.

Вы можете изобрести мир — я не думаю, что это будет наш мир — но вы можете изобрести мир, в котором ничего не происходит, кроме случайных изменений в объектах и отбора на основе внешних сил. Хомский: Может быть, это самый высокий уровень объяснения, который вы можете получить. Есть много способов, как естественные силы определяют те каналы, в которых может происходить отбор, некоторые вещи происходят, некоторые не происходят. Я не думаю, что наш мир так устроен, и я не думаю, что есть хоть один биолог, который так думает. Возьмите хотя бы первый шаг, мейоз: почему клетки разделяются на сферы, а не кубы? Очень многие вещи в организме работают не так. Нет резона думать, что законы физики здесь останавливаются, они работают везде. Это не случайные мутации и не естественный отбор: это законы физики.

Да, конечно, они ограничивают биологию.

Это: случайные мутации, отбор и всё остальное, что имеет значение, например, законы физики. Хомский: Окей, то есть это всё-таки не просто случайные мутации и отбор.

Институт Броудов здесь [в MIT/Гарварде] создает большие объемы данных разных геномов разных животных, разных клеток в разных обстоятельствах, и секвенирует любую молекулу, какую только возможно. Есть ли место этим подходам, которые сейчас называются «сравнительная геномика»? Есть ли что-то, что можно выудить о высокоуровневых когнитивных задачах из этих сравнительных эволюционных опытов, или это незрелый подход?

Как и вы. Хомский: Я не говорю, что это неверный подход, но я не знаю, что можно из этого извлечь.

Например, мутации Foxp2? Есть ли у вас примеры, в которых этот эволюционный анализ сообщил о чем-то важном? ред: Ген, который, как считалось, связан с речевыми или языковыми способностями. [Прим. Он имеет несколько мутаций, уникальных для разных стадий эволюции человека.] В семьях с типичными нарушениями речи были обнаружены генетические мутации, которые разрушают этот ген.

Он связан с мелкой моторикой и подобными вещами. Хомский: Foxp2 интересен, но он никак не связан с языком. Так что, к примеру, если вы используете артикуляционные органы или знаки, ну, к примеру, жест рукой — это тот же самый язык. Это имеет отношение к использованию языка, например, когда вы говорите — вы управляете своими губами и так далее, но это очень периферийно относительно языка, и это уже известно. Так что какая бы ни была экстернализация, это всё на периферии. Фактически, он даже анализируется и вырабатывается в той же самой части мозга, хотя в одном случае двигаются руки, в другом губы. Есть интересные примеры в изучении языка, где происходит конфликт между вычислительной эффективностью и коммуникативной эффективностью. Я думаю, довольно сложно об этом говорить, но если вы посмотрите на устройство языка, вы получите свидетельства этого.

Если вы хотите знать, к какому глаголу прикрепляется наречие, ребенок рефлекторно использует минимальное структурное расстояние, а не минимальное линейное расстояние. Возьмите этот пример, который я уже упоминал, с линейным порядком. И если линейный порядок есть всего лишь рефлекс сенсомоторной системы, что кажется разумным, то его не будет. Да, использовать минимальное линейное расстояние проще с вычислительной точки зрения, но для этого нужно, чтобы было понятие линейного порядка. Вот свидетельство того, что проецирование внутренней системы на сенсомоторную систему периферийно относительно работы вычислительной системы.

Но может так быть, что вычислительная система вносит свои ограничения, как физика ограничивает мейоз?

Например, левый конец — левый в смысле более ранний — предложения имеет иные характеристики, нежели правый. Хомский: Может быть, но нет никаких свидетельств. Фактически, в любом языке, в котором вопросительная группа — кто, чья книга — перемещается куда-то еще, она перемещается влево, а не вправо. Если вы хотите задать вопрос, к примеру: «Кого вы видите?» Вы поставите слово «Кого» в начало, не в конец. Предложение начинается с того, что говорит тебе, слушателю: вот какого я вида. Это, очень вероятно, ограничение обработки информации. Если вы это произносите, это ограничение обработки информации. Если бы стояло в конце, то у вас было бы полностью декларативное предложение, и только в конце вы узнали бы, о какой информации я вас спрашиваю. Так что, если это так, то экстернализация влияет на вычислительный характер синтаксиса и семантики.

Возьмите простой пример: если я скажу «Посещение родственников может быть обузой» — это двусмысленно. Есть случаи, в которых вы находите явные конфликты между вычислительной и коммуникативной эффективностью. Или вы идете навестить родственников? Родственники вас посещают? Так что это вычислительно эффективно, но неэффективно для коммуникации, поскольку приводит к неразрешимой двусмысленности. Оказывается, в каждом известном случае двусмысленность появляется просто от того, что мы позволяем правилам функционировать свободно, без ограничений.

Предложения наподобие: «The horse raced past the barn fell.» (лошадь, которую направили за сарай, упала — прим. Или возьмите пример предложений с эффектом садовой дорожки, уводящей в неправильном направлении. Люди, когда видят такое предложение, не понимают его, поскольку оно построено таким образом, что уводит вас по садовой дорожке. перев.). С другой стороны, если вы задумаетесь, это абсолютно корректно сформированное предложение. «The horse raced past the barn» звучит как предложение, и затем вы озадачены: что же делает слово «fell» в конце? Но правила языка, когда они просто функционируют, могут выдавать вам непонятные предложения из-за феномена садовой дорожки. Оно означает, что лошадь, которая была направлена мимо сарая кем-то, упала.

Есть вещи, которые вы просто-напросто не можете сказать, по некоторым причинам. И есть много таких примеров. И вы скажете: «Они интересовались, починили ли механики машины». Если я скажу: механики починили машины. Предположим, вы хотите задать вопрос о механиках. Вы можете задавать вопросы о машинах: «Сколько машин, о которых они интересовались, починили ли их механики?» Более или менее можно. Это понятная мысль, но вы не можете это сказать. «Сколько механиков, они интересовались, починили ли они машины?» Почему-то так уже не работает, нельзя так сказать. Но для выражения мысли, для коммуникации, было бы лучше, если бы вы могли сказать это — отсюда и конфликт.
И фактически, в каждом случае такого конфликта, вычислительная эффективность выигрывает. Если вы изучите этот случай в деталях, самые эффективные вычислительные правила не дают вам сказать это. Я, может быть, недостаточно правдоподобно это показал, но просто если вы произнесете вслух, это будет достаточно убедительным аргументом. Экстернализация уступает во всех случаях двусмысленностей, но просто из вычислительных соображений, по-видимому, система внутри себя не беспокоится об экстернализации.

Что утверждается этим фактом: в ходе эволюции языка, развивалась и вычислительная система, и только потом она была экстернализована. Это говорит нам кое-что об эволюции. В какой-то момент человеческой эволюции, и это очевидно, достаточно недавно, если посмотреть археологические данные — может быть, в последние сто тысяч лет назад, и это всего ничего — в какой-то момент появилась вычислительная система с новыми свойствами, которых не было у других организмов, такие арифметического типа свойства… И если вы подумаете о том, как мог развиваться язык, вы почти уже пришли к этой позиции.

То есть она позволяла лучше думать перед экстернализацией?

Небольшая перепрошивка мозга, которая происходит у отдельного человека, не у группы. Хомский: Она дает вам мышление. Так что и в экстернализации смысла нет. У того человека была способность мыслить, у группы — нет. Потом, если это генетическое изменение распространяется, и допустим, у многих людей оно есть, тогда есть смысл искать способ спроецировать его на сенсомоторную систему, и это экстернализация, но это вторичный процесс.

Только если экстернализация и внутренняя система мышления не соединены непредсказуемым образом.

Зачем ей быть соединенной с внешней системой? Хомский: Мы не предсказываем, и в этом мало смысла. И есть множество других животных, таких как певчие птицы, у которых есть внутренняя вычислительная система, птичья песня. Например, ваши способности к арифметике ведь не соединены с ней. И она экстернализирована, но иногда и нет. Это не та же самая система, но это некоторая внутренняя вычислительная система. В этот ранний период у него есть песня, но нет системы экстернализации. Птенец в некоторых видах осваивает песню этого вида, но не воспроизводит ее до зрелости. Может быть, у него недостаточно памяти, или еще какие-то причины. Это верно и в отношении людей: человеческий ребенок понимает гораздо больше, чем может воспроизвести — достаточно много экспериментальных свидетельств — что говорит о том, что у ребенка есть внутренняя система, но он не может ее экстернализировать.

В недавнем интервью вы сказали, что часть проблемы в том, что ученые не думают достаточно много о том, чем они занимаются. Мне бы хотелось закончить одним вопросом о философии науки. Какие важные озарения можно почерпнуть в философии науки, наиболее релевантные для ученых-биологов, которые хотят дать объяснительную теорию, а не пересказ феномена? Вы упоминали, что вели курс философии науки в MIT, и люди читали, к примеру, Уилларда ван Ормана Куайна, и это влетало в одно ухо, а в другое вылетало, и люди возвращались заниматься своей наукой точно так же, как и раньше. Вместо того, чтобы вести науку в сторону бихевиоризма — интуиция, которой руководствуются многие нейробиологи.

Хомский: Философия науки очень интересная дисциплина, но я не думаю, что она действительно делает вклад в науку — она учится у науки. Что вы ожидаете от такой теории, и какие озарения помогут направить науку в такое русло? Что я считаю важным в истории науки. Она пытается понять, что делают науки, почему в них происходят достижения, какие пути неправильные, можно ли это кодифицировать и понять. Особенно, когда мы понимаем, что в когнитивных науках мы еще в до-Галилейской стадии. Я думаю, мы очень много узнаем из истории науки того, что может быть очень важным для развивающихся наук. Например, один потрясающий факт из ранних наук, необязательно из Галилея, но в целом из времен Галилеевых открытий — в том, что простые вещи могут быть очень запутанными. Мы не знаем, что мы ищем что-то, что уже отыскал Галилей, и тут есть чему поучиться. Почему чашка падает, а пар поднимается? Вот я держу эту чашку, и, если вода кипит, то будет подниматься пар, но если я уберу руку, то чашка упадет. Тысячу лет подряд на это был вполне удовлетворительный ответ: они стремятся к своему естественному состоянию.

Как в Аристотелевой физике?

Лучшие и величайшие ученые считали, что ответ именно такой. Хомский: Это и есть Аристотелева физика. Как только вы разрешаете себе усомниться, вы немедленно обнаруживаете, что ваша интуиция неверна. Галилей позволил себе усомниться. Все ваши интуиции вас обманывают — загадки повсюду, куда ни посмотри. Как падение малой массы и большой массы, и так далее. Возьмите тот же пример, который я вам привел, «инстинктивно летающие орлы плавают». В истории науки есть, что изучить. Но если вы подумаете, то это очень загадочно, вы используете сложные вычисления вместо простых. Никто никогда не думал, что это загадка. Как, к примеру: линейный порядок не часть вычислительной системы, что является важным допущением об архитектуре мышления — оно говорит, что линейный порядок лишь часть системы экстернализации, то есть второстепенной системы. Если вы даете себе удивиться этому, как падению чашки, вы задаете вопрос «Почему?», и затем вы попадаете на путь довольно интересных ответов. И это открывает огромное количество других путей.

История науки дает некоторые очень интересные иллюстрации в химии и физике, и я думаю, они вполне релевантны для состояния когнитивных и нейрофизиологических наук современности. Или возьмите другой пример: разница между редукцией и унификацией.

Послесловие переводчика: за время, прошедшее с выхода интервью, у Хомского вышли другие интересные материалы — можно предложить ознакомиться с 2,5-часовой беседой с американским физиком Лоуренсом Крауссом, или с новой книгой Хомского и Бервика «Человек говорящий», если вас интересуют вопросы эволюции и языка.

Автор перевода — Волкова Татьяна.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть