Хабрахабр

[Перевод] Китайская панель биомаркеров старения

Молекулярные и фенотипические биомаркеры старения.

Введение.

Для чего нужны биомаркеры старения?

И этот процесс напрямую связан с молекулярными изменениями. Старение представляет из себя зависящий от времени физиологический функциональный спад, который поражает большинство живых организмов. С одной стороны, выявление биомаркеров старения будет способствовать дифференциации людей, имеющих один и тот же хронологический возраст, но разные варианты старения. Он также является самым основным фактором риска для многих неинфекционных заболеваний. Количественные биомаркеры старения также могут составить группу измерений для «здорового старения» и, кроме этого, прогнозировать продолжительность жизни.

Здесь мы рассмотрим фенотипические и молекулярные биомаркеры старения. С другой стороны, биомаркеры старения могут также помочь исследователям сузить сферу исследований до конкретных биологических аспектов в попытках объяснить биологические процессы, связанные со старением и возрастными заболеваниями.

Этот обзор в основном рассматривает результаты, полученные в исследованиях с людьми (и в некоторых редких случаях – с лабораторными животными (мышами) и нематодами). Фенотипические биомаркеры могут быть неинвазивными, панорамными и легкодоступными, тогда как молекулярные биомаркеры могут отражать некоторые молекулярные механизмы, лежащие в основе возрастного статуса.

Молекулярные биомаркеры старения

В рамках этих обзоров мы фокусируемся на событиях, начиная с 2013 года.
Этот раздел создан на основе двух высокоэффективных обзоров по признакам старения 1, 2. Американская федерация исследований старения (AFAR) предложила следующие критерии для биомаркера старения:
(1) он должен прогнозировать скорость старения;
(2) он должен контролировать основной процесс, лежащий в основе процесса старения, а не последствия болезни;
(3) он должен иметь возможность проходить повторное тестирование без ущерба для человека;
(4) это должно быть что-то, что работает на людях и лабораторных животных.

Для первого критерия мы старались, чтобы биомаркер имел корреляцию со старением; для второго критерия мы организовали первую часть этого обзора в соответствии с молекулярными путями, подрывающими старение. Биомаркеры, отвечающие всем критериям, предложенным AFAR, вряд ли будут существовать 3, поэтому в молекулярной части этого обзора мы следуем первым двум критериям: биомаркер должен прогнозировать скорость старения и должен контролировать основной процесс, лежащий в основе старения.

ДНК и хромосомы.

Теломеры.

Они становятся короче после каждой репликации, так как теломераза, фермент, ответственный за их репликацию, не регулярно экспрессируется в соматических клетках 4. Теломеры представляют рибонуклеопротеидные комплексы в конце хромосом. Длина теломер в лейкоцитах связана со старением и продолжительностью жизни 5, а также с возрастными заболеваниями, такими как сердечно-сосудистые заболевания 6, 7, рак 8 и неврологические расстройства 9.

Восстановление ДНК.

Совсем недавно, эта связь была непосредственно продемонстрирована: индукция двунитиевых разрывов ДНК в печени мыши вызывала возрастные патологии и экспрессию генов 12. Связь между повреждением и восстановлением ДНК связана со старением путем накопления стареющих клеток 10 или геномных перегруппировок 11. Иммуногистохимия γ-H2AX является установленным количественным биомаркером старения, потому что H2AX является вариантом семейства белков-гистонов H2A, а фосфорилированный H2AX, γ-H2AX является исходным и существенным компонентом очагов повреждения ДНК.

Сывороточные маркеры повреждения ДНК, том числе, cathelin-related antimicrobial peptide (CRAMP), эукариотический фактор элонгации трансляции EF-1a, статмин, N-ацетил-β-D-глюкозаминидаза (NAG) и хитиназа, также были описаны 16. Поэтому его можно считать надежным маркером степени повреждения ДНК 13 — 15.

Такие эксперименты ex vivo также могут быть потенциальными биомаркерами старения. Следует отметить, что дермальные фибробласты от столетних доноров были менее чувствительны к повреждению ДНК, вызванному пероксидом водорода, чем фибробласты от других доноров, более молодых 17.

Эпигенетические модификации.

Анализ профилей метилирования в крови показал, что только три сайта CpG могут предсказать возраст со средним абсолютным отклонением от хронологического возраста менее 5 лет 21. Возрастные изменения в структуре метилирования ДНК, в частности, в качестве эпигенетических часов, являются одними из наиболее изученных биомаркеров старения 18 — 20. Для полного обзора эпигенетической регуляции старения см. Связь между возрастом и метилированием ДНК может быть распространена на возрастные заболевания, такие как диабет 22. 23.
РНК и транскриптом. Sen et al.

С быстрым прогрессом в технологии полногеномного секвенирования РНК (RNA-seq), она активно стала применяться в изучении и поисках биомаркеров старения. Профили транскриптов. недавно показали, что изменение экспрессии в клетках, измеренное в сортированных Т-клетках секвени́рованием РНК одино́чных кле́ток (single-cell RNA-seq) вместе с проточной цитометрией, связано со старением и восприимчивостью к болезням 24. Lu et al.

А затем полученные данные использовали их для расчета «транскриптомического возраста» индивидуума, предполагая, что сигнатуры транскриптома могут использоваться для измерения старения 25. В недавнем исследовании использовались профили экспрессии генов цельной крови, взятой у 14 983 человек для идентификации 1457 генов с зависимой от возраста дифференциальной экспрессией.

Некодирующие РНК.

Среди них есть циркулирующие miRNAs, которые могут быть стабильными в плазме за счет пребывания в экзосомах или связывания с белковыми или липопротеидными факторами, что делает их доступными для биомаркеров. МикроРНК (miRNAs) представляют собой класс малых (от 21 до 23 нуклеотидных) некодирующих РНК, которые регулируют широкий спектр биологических процессов, включая метаболизм 26 и старение 27. miR-34a была первой наблюдаемой циркулирующей miRNA с измененной картиной экспрессии при старении у мышей28.

miR-21 была определена как воспалительный биомаркер при исследовании 365 miRNAs в плазме здоровых и старых людей 30. Обнаружено, что её экспрессия коррелирует с возрастной потерей слуха у мышей и людей 29. Было обнаружено, что miR-126-3p положительно коррелирует с возрастом у 136 здоровых субъектов от 20 до 90 лет 32. Уровни miR-151a-3p, miR-181a-5p и miR-1248, как сообщается, значительно уменьшались с возрастом у людей, и все три miRNAs также показывают связь с воспалением 31.

обнаружили, что уровни mir-71, mir-246 и mir-239 в раннем взрослом возрасте различаются у индивидуумов и прогнозируют продолжительность жизни 33. Посредством экспрессии GFP, Pincus et al. В недавнем обзоре 27 обобщены ассоциации других типов циркулирующих некодирующих малых РНК, таких как tRNA и YRNA.

В двух последних обзорах суммируется роль lncRNAs в старении 35, 36. Длинные некодирующие РНК (lncRNAs) представляют собой гетерогенный класс некодирующих РНК, которые определены как транскрипты длиной более 200 нуклеотидов, не имеющие очевидных открытых рамок считывания 34. Было обнаружено, что lncRNA MIR31HG активируется в вызванном онкогенами старении, и требуется для репликации, опосредованной поликомбической группой локуса INK4A 38. Рассмотрение разнообразных функциональных механизмов lncRNA выходит за рамки этого обзора, и читатели могут ознакомиться с недавним обзором по этой теме 37; здесь мы приводим список lncRNAs, которые функционируют в процессе старения.

Уровни Meg3 повышаются во время сердечно-сосудистого старения, а также в стареющих человеческих пупочных венозных эндотелиальных клетках 40. Понижение уровня lncRNA AK156230 происходит в репликативном старении, и её нокдаун в эмбриональных фибробластах мыши индуцирует старение через дисрегуляцию путей аутофагии и клеточного цикла, что показано профилями экспрессии 39.

Метаболизм.

42 Исследования указывают на основную роль метаболизма в регуляции старения и на возможность метаболических факторов выступать в качестве биомаркеров. Диетическое ограничение (ограничение калорий) является наиболее консервативным средством увеличения продолжительности жизни, от дрожжей до млекопитающих.

Чувствительность к питательным веществам.

Парадоксально, что IGF-1 снижается у мышей дикого типа или в мышиных моделях преждевременного старения, тогда как ослабление активности IIS увеличивает продолжительность жизни 43. Путь передачи сигналов инсулина / IGF-1 (IIS), который участвует в потреблении глюкозы, является самым ранним обнаруженным и наиболее известным путем противодействия долголетию. Такие наблюдения привели к потенциальному включению элементов пути IIS, таких как гормон роста и IGF-1, в качестве биомаркеров старения 44, 45.

Ингибирование mTOR может продлить продолжительность жизни 46. Белок мишень рапамицина у млекопитающих (mTOR) зависит от высоких концентраций аминокислот. Фосфорилированный рибосомальный белок S6 (p-S6RP или pS6) является нисходящей мишенью, а также известным маркером активной сигнализации mTOR 47, 48, и является потенциальным биомаркером старения, как указано в исследовании стареющих яичников 47. В отличие от пути IIS, активность mTOR увеличивается с возрастом в эпителии яичников человека и мыши, что способствует патологическим изменениям 47.

AMPK обнаруживает высокие уровни AMP, тогда как сиртуины — это датчики высоких уровней NAD +, и оба они отмечают состояния, связанные с понижением запасов энергии. В отличие от функции IIS и mTOR, 5'-аденозинмонофосфат (AMP) -активированная протеинкиназа (AMPK) и сиртуины чувствительны к дефициту питательных веществ вместо их обилия. AMPK повышается с возрастом в скелетных мышцах 50. Повышение активности AMPK с помощью метформина, препарата для диабета II типа, может имитировать некоторые из преимуществ ограничения калорийности, метформин увеличивал продолжительность жизни у мышей 49.

Во время старения NAD + уменьшается 51,, а активность сиртуинов подавляется 52, 53. Сиртуины обладают способностью напрямую связывать клеточный сигнальный метаболизм (посредством НАД + ) с посттрансляционными модификациями белка посредством химической реакции (деацетилирование лизина). Аналогично, уровни SIRT1, SIRT3 и SIRT6, обнаруженные с помощью вестерн-блоттинга, показали значительное снижение в яичниках старых мышей 55. Анализ первичных человеческих дермальных фибробластов показал уменьшение активности SIRT1 и SIRT6 54. В мононуклеарных клетках из периферической крови человека SIRT2 также уменьшается с возрастом 56.

Белковый обмен.

Что считается признаком молекулярного старения и связано с возрастными заболеваниями, такими как сердечно-сосудистые 58. Карбамилирование белков является одной из неферментативных посттрансляционных модификаций, которые происходят на протяжении всей жизни организма, что приводит к тканевому накоплению карбамилированных белков 57.

AGE могут быть обнаружены с помощью высокоэффективной жидкостной хроматографии, газовой хроматографии-масс-спектрометрии и иммунохимических методов 64. Продвинутые конечные продукты гликирования (AGE) представляют собой гетерогенную группу биоактивных молекул, которые образуются в результате неферментативного гликирования белков, липидов и нуклеиновых кислот 59.Накопление AGE в тканях в процессе старения приводит к воспалению 60, апоптозу 61, ожирению 62 и другим возрастным отклонениям 63. N-гликаны представляют собой класс гликопротеинов с сахарными цепями, связанные с амидным азотом аспарагина.

Накопление N-связанного гликирования в Asn297 из Fc-части IgG (IgG-G0) может способствовать провоспалительному статусу при старении 65. Спектр N-связанных гликанов (N-glycome) теперь можно исследовать из-за развития высокопроизводительных методов.

Липидный обмен.

Исследования липидов долгожителей и просто пожилых людей показали, что фосфо / сфинголипиды являются предполагаемыми маркерами и биологическими модуляторами здорового старения 67. Установлено, что уровень триглицеридов постепенно повышается с возрастом и, следовательно, может быть биомаркером старения 66. Но эти две группы, очевидно, очень разных возрастов. Тем не менее, дизайн этих исследований сомнителен в том, что у там есть группа пожилых людей как «не здоровый контроль старения», которая сравнивается с «успешно стареющей» группой столетних долгожителей 67, 68. Поэтому неясно, разница в возрасте или здоровое старение способствовало различиям в липидомике.

Окислительный стресс и митохондрии.

Продукты окислительного повреждения белков включают о-тирозин, 3-хлортирозин и 3-нитротирозин. Биомаркеры окислительного стресса уже давно считаются классом биомаркеров старения. 8-гидрокси-2'-дезоксигуанозин и 8-гидроксигуанозин показывают окислительные повреждения нуклеиновых кислот69. 8-iso простагландин F 2α является биомаркером повреждения фосфолипидов.

Shen et al. Концентрация этих биомаркеров в жидкостях организма может быть обнаружена с помощью высокоэффективной жидкостной хроматографии и масс-спектрометрии. сконструировали циркулярно-перестроенный желтый флуоресцентный белок (cpYFP), экспрессируемый в митохондриальной матрице Caenorhabditis elegans в качестве датчика окислительного стресса и метаболических изменений 70.

Для измерения функции митохондрий доступны аналитические стратегии респирометрического профилирования на основе крови и мышц 71 или фенотипов, таких как скорость 72 ходьбы. Хотя свободные радикалы, источник окислительного стресса, в основном продуцируются в митохондриях, дисфункциональные митохондрии могут способствовать старению независимо от активных форм кислорода. Также «Воспаление и межклеточная связь»). Внеклеточные компоненты митохондрии могут функционировать как молекулы, связанные с повреждением (DAMPs) (см. Они индуцируют нейровоспаление при введении в гиппокамп мыши 73.

Старение клеток.

Таким образом, биомаркеры клеточного старения могут также использоваться в качестве маркеров. Считается, что в митотических тканях постепенное накопление стареющих клеток является одним из причинно-следственных факторов старения 74 — 76. SAβ-gal отражает увеличенную массу лизосом 82,, но может давать ложные срабатывания из-за своей низкой специфичности 83. Такие биомаркеры были обобщены в последних обзорах 77, 78.Наиболее широко используемым маркером является ассоциированная с старением β-галактозидаза (SAβ-gal) 79 и белок p16 INK4A 80, 81. SAβ-gal является маркером повреждения клеток, а p16INK4A требуется для полной остановки клеточного цикла 81.

«Восстановление ДНК»), укорачивание и дисфункцию теломер (см. Другие маркеры стареющих клеток включают активированный и устойчивый ответ на ДНК-повреждения (см. «Воспаление и межклеточная связь»). «Теломеры») и связанный со старением секреторный фенотип (SASP) (см.

Воспаление и межклеточная связь.

SASP функционирует аутокринно и паракринно 84, 85. SASP является следствием клеточного старения и может возникать в клетках, которые все еще являются метаболически активными и секретируют белки. Белки, которые связаны с SASP, такие как интерлейкин-6, фактор некроза опухоли-альфа, моноцитарный хемотаксический фактор-1 (МСР-1), матриксные металлопротеиназы и IGF-связывающие белки, способствуют старению тканей в сочетании с воспалением 86. Основными компонентами факторов SASP являются растворимые сигнальные факторы, включая интерлейкины, хемокины и факторы роста.

87 и в базах данных Reactome (http://www.reactome.org/content/detail/R-HSA-2559582 ). Всесторонние каталоги SASP также включают секретируемые протеазы и секретируемые нерастворимые белки / компоненты внеклеточного матрикса и обобщены Coppé et al.

Существует связь между DAMPs и другими признаками старения, она была рассмотрена Huang et al. Молекулы группы DAMPs (молекулярный фрагмент, ассоциированный с повреждением), такие как белки теплового шока, гистоны, амфотерин (HMGB1) и кальций-связывающий белок S100, составляют класс молекул, высвобождаемых после травмы или клеточной смерти 88,, которые опосредуют иммунный ответ. 89.

Фенотипические биомаркеры старения.

Фенотипическим биомаркерам сложно контролировать основной молекулярный процесс, который лежит в основе процесса старения, поэтому мы следуем трем стандартам: биомаркер должен прогнозировать скорость старения, он должен быть способен повторно тестироваться, не причиняя вреда человеку, и он контролирует один или более физиологический процесс. Следуя критериям, предложенным AFAR 3, мы классифицируем фенотипические биомаркеры старения.

В связи с этим, такие измерения, как скорость ходьбы, вставание со стула, баланс стоя, сила сжатия кисти, индекс массы тела, окружность талии и мышечная масса хорошо известны 90. Физические функции и антропометрия являются наиболее практичными измерениями среди фенотипических биомаркеров старения. Эти физические функциональные измерения, хотя и простые, могут быть действительно лучше, чем метилирование ДНК, с точки зрения отношения к состоянию здоровья в демографических исследованиях 91.

Количественные черты лица, основанные на трехмерных изображениях лица, такие, как ширина рта, ширина носа и угол наклона глаз, сильно связаны с возрастом. Количественные фенотипы внешних человеческих особенностей также показывают значительные взаимосвязи со старением 92, 93. Фактически, трехмерные изображения лица могут использоваться для количественной оценки биологического возраста человека 92.

Заключение и перспективы

Это, однако, не означает, что они одинаково полезны. Как и ожидалось из-за сложной природы процесса старения, биомаркеры старения многослойны и многогранны и состоят из головокружительного массива параметров, которые суммированы ниже. Мы должны указать, что не все факторы, хотя они могут быть вовлечены в подрывной биологический процесс старения, оказались полезными с точки зрения измерения старения человека на данном этапе.

Биомаркеры старения. Приложение 1.

Молекулярные биомаркеры. I.

ДНК и хромосомы.
а) γ-H2AX
б) длина теломер лейкоцитов
в) метилирование ДНК. 1.

2.РНКи транскрипция.
а)гетерогенность CD38 в CD4 +CD27 + Т-клетках
б)гетерогенность CD197 в CD4 +CD25 + T-клетках
в) циркулирующие микроРНК (miR-34a, miR-21, miR-126-3p, miR-151a-3p, miR-181a-5p, miR-1248)
г) длинные некодирующие РНК (MIR31HG, AK156230, Meg3)

Метаболизм
а) гомон роста, инсулин, IGF-1
б) mTOR, pS6RP
в) NAD +, SIRT1, SIRT2, SIRT3, SIRT6.
г) карбамилирование белков
д) конечные продукты гликирования и N-гликаны
е) триглицериды 3.

Окислительный стресс и митохондрии
а) о-тирозин, 3-хлортирозин, 3-нитротирозин,
б) 8-изопростан
в) 8-гидрокси-2'-дезоксигуанозин
д) 8-гидроксигуанозин 4.

Старение клеток
а) ассоциированная со старением бета-галактозидаза
б) белок p16INK4A. 5.

6.Воспаление и межклеточная связь.
a) связанный со старением секреторный фенотип (SASP)

Фенотипические биомаркеры. II.

Физические функции и антропометрия
а) скорость ходьбы, вставание со стула, баланс стоя, сила сжатия кисти, мышечная масса
б) индекс массы тела, окружность талии. 1.

Черты лица
а) ширина полости рта
б) ширина носа
в) расстояние от рта до носа
г) наклон угла глаза 2.

Molecular and phenotypic biomarkers of aging Version 1. Источник:
Xian Xia, Weiyang Chen, Joseph McDermott, and Jing-Dong Jackie Hana. 2017; 6: 860. F1000Res.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть