Хабрахабр

Новый способ создания нанотрубок: теперь в цвете

Послужили этому их механические и электронные свойства, а также нанометровые размеры. Углеродные нанотрубки стали неотъемлемой частью современных технологий. Качество нанотрубок, по большей степени, зависит от показателя хиральности (когда нет симметрии между правой и левой сторонами). Применяется данный материал в очень многих областях: от элементов питания до дисплеев. Вариантов создания нанотрубок существует уже несколько, и они все работают. Чем меньше этот показатель, тем лучше будет нанотрубка. Именно об этом и пойдет речь в исследовании, в котором мы будем с вами разбираться. Но это не значит, что какие-то энтузиасты не попытаются придумать свой новый способ, который будет лучше предшественников. Поехали.

Предыстория

Для начала, вкратце, вспомним что есть углеродная нанотрубка. Это можно просто понять по названию сего материала. Во-первых, это цилиндрическая структура (трубка) из графитовых плоскостей, размеры которой могут быть порядка нескольких нанометров. Различают два основных типа нанотрубок: одностенные и многостенные (изображение ниже).

Дабы новый метод создания нанотрубок было с чем сравнивать, исследователи приводят в пример несколько уже существующих способов, которые позволяют достичь низкого показателя распределения хиральности, что крайне важно для нанотрубок. В сегодняшнем исследовании речь пойдет об одностенных. Первый способ — пост-синтетическая обработка — чаще всего основан на таких техниках:

  • ионообменная хроматография* (IEX) одностенных нанотрубок, закрученных как ДНК;
  • центрифугирование в градиенте плотности* (DGU);
  • эксклюзионная хроматография*;
  • двухфазовое водное разделение*.

Ионообменная хроматография* — способ разделения ионов и полярных молекул на основании зарядов разделяемых молекул.

Центрифугирование в градиенте плотности* — разделение макромолекул на базе их распределения в разных по плотности частях градиента.

Эксклюзионная хроматография* — разделение молекул по размеру за счет их отличной друг от друга способности проникать в поры твердой фазы (или жидкости), связанной на инертном носителе.

Двухфазное водное разделение* — распределение частиц между фазами двухфазовой водной системы.

Все вышеперечисленные техники так или иначе связаны с растворением чего-то в чем-то. Исследователи считают, что в этом кроется большая проблема, так как в процессе растворения образец может быть загрязнен. А это негативно скажется на качестве нанотрубки, как следствие и на ее свойствах.

Который, по словам ученых, лишен вышеописанной проблемы загрязнения. Второй способ это непосредственное выращивание одностенных нанотрубок. Главным недостатком выращивания является сложность проведения сего процесса и малый результат. Выращивание нанотрубок использует их отдельные сегменты, углеродистые молекулярные внедрения и катализаторы.

Производить таким способом нанотрубки можно быстро и в большом объеме, а их свойства не будут подвержены отрицательным изменениям. Есть и еще один способ создать нанотрубки, который, на первый взгляд, лишен недостатков, — это химическое осаждение из газовой фазы с плавающим катализатором (FC-CVD). Звучит все весьма радужно, однако и тут кроется каверзный момент. К тому же нанотрубки можно собирать на мембранном фильтре для формирования тонких пленок, готовых к применению. Решить эту проблему можно посредством внедрения небольшого количества NH3, способного сузить хиральное распределение. Находясь в аэрозольной среде, катализаторы могут вызывать сложности в процессе селективного выращивания нанотрубок с низкой хиральностью. Однако атомы N могут при высоких температурах загрязнить нанотрубки, чем изменят ее электронные свойства.

Однако исследователи предложили вариант, когда можно избежать вышеописанных проблем. Какой способ не рассматривай, всегда найдется какой-то неприятный недостаток, с которым приходится считаться.

Создание образца и результаты

Ученые решили не придумывать новый способ создания нанотрубок, а усовершенствовать имеющийся, а именно химическое осаждение из газовой фазы с плавающим катализатором. Метод усовершенствования оказался весьма прост — добавление небольшого количества СО2.

Одностенные нанотрубки были синтезированы из СО (источник углерода) при объемном расходе 350 см3/мин. А теперь по порядку. В качестве катализатора выступал ферроцен ((η5-С5Н5)2Fe), переносимый потоком СО в 50 см3/мин.

5 и 2. Настройка процесса выращивания нанотрубок осуществлялась посредством введения в реактор различного объема СО2 с объемным расходом 0, 1, 1. 25, 0. 0 см3/мин, что соответствует таким объемным долям: 0, 0. 50 об.%. 37 и 0. Температура при этом составляла 850 или же 880 °C.


Схема работы реактора

Это отчетливо видно на изображении ниже. Внедрение разного объема СО2 привело к тому, что пленки из нанотрубок получились разного цвета. Данные пленки были получены при температуре 850 °C.

Также было выявлено, что образцы обладают высоким показателем чистоты. Проведя просвечивающую электронную микроскопию и энергодисперсионную рентгеновскую спектроскопию, ученые обнаружили, что разница в цвете никоем образом не влияет на общие показатели наночастиц и размер.


Просвечивающая электронная микроскопия (a, b, c) и темнопольная микроскопия (d, e, f) трех образцов с разной объемной долей СО2.

Так для 0, 0. Средний диаметр нанотрубок также зависит напрямую от концентрации СО2. 37 и 0. 25, 0. 1, 1. 50 об.% средний диаметр составил соответственно 1. 8 и 1. 3, 1. 9 нм.

Ввиду того, что цвет пленки и диаметр нанотрубок отображают концентрацию СО2, логично предположить, что данная примесь тем или иным образом меняет и сами свойства нанотрубок.

25 об.%) наблюдаются довольно выраженные резкие изменения показателя поглощения при длине волны примерно 610 нм, а у коричневого образца (0. У зеленого образца (0. 37 об.%) — при 760 нм.


Спектр поглощения образцов с разной объемной долей СО2.

5 об.%), у которых подобных скачков не наблюдалось, не имеют яркого цвета, а остаются серыми. А вот другие образы (0 и 0.

Чтобы глубже рассмотреть зависимость распределения хиральности (n, m) от концентрации СО2 был проведен электронный дифракционный анализ образца.


Электронный дифракционный анализ

Проведя анализ межстрочного интервала был установлен индекс хиральности — (16,13). Изображение выше (а) является типичным снимком одностенной нанотрубки, а изображение b — картина дифракции электронов (EDP) этой нанотрубки.

25 об.%.
Электронный дифракционный анализ образца 0 и 0.

Проведение такого же анализа рабочих образцов (изображения выше) показал значительно лучшие результаты: (8,7) и (11, 9).

При объемной доле СО2 в 0. При увеличении концентрации СО2 диаметр нанотрубок также увеличивается. 0 — 1. 25 об.% диаметр составляет 1. Этот показатель напрямую связан и с показателем поглощения образца. 5 нм.

В противном же случае мы наблюдаем серый цвет. Получается, что при оптимальном диаметре нанотрубки и достаточно хорошем показателе распределения хиральности, образец имеет зеленый цвет. 25. Это замечание стоит соотнести с концентрацией СО2, то есть ее оптимальный об.% равен 0.

Еще одним из показателей структуры нанотрубки является угол хиральности (угол между направлением сворачивания и направлением, в котором соседние шестиугольники имеют общую сторону).


Чтобы получить трубку, то есть скрутить графитовую плоскость, нужно разрезать последнюю по пунктирным линиям и свернуть по вектору R.

25 и 0. Все рассматриваемые образцы (0, 0. 50) показали вполне удовлетворительный угол хиральности — 20°-30°.

Как оказалось, все трубки в связке имели разный угол хиральности: 3. Электронный дифракционный анализ также был проведен и для проверки электронных свойств связки нанотрубок. 9°, 26. 1°, 18. 1°.


Электронный дифракционный анализ связки нанотрубок.

50 увеличивался процент металлических нанотрубок (имеется ввиду электропроводимость) с 29. Также был обнаружен занимательный факт: с увеличением концентрации СО2 с 0 до 0. 3%. 8 до 46. 23 об.%, качество нанотрубок сильно уменьшалось. Однако, когда концентрация достигала 1.

При более высоких температурах можно снизить скорость разложения СО (основы нанотрубок в данном исследовании). Не меньшую роль в процессе создания нанотрубок играет температура. Это даст возможность лучше контролировать процесс синтеза с достижением более низкого показателя хирального распределения.

25 об.% СО2 и температуре 880 °C.
Вариации хиральности (а) и диаметра (b) нанотрубок при 0.

А диаметр большинства трубок (более 98%) варьируется в диапазоне 1. Сравнивая эти показатели с подобными, но при температуре 850 °C, видно, что была получена хиральность значительно ниже, сконцентрированная вокруг (11,9). 5 нм, что является великолепным результатом для данного исследования. 2-1.

А дополнительные материалы (графики, снимки, таблицы и т.д.) — тут. Отчет ученых об их исследовании доступен тут.

Эпилог

Ученые честно заявляют, что многое еще предстоит проверить. Ибо некоторые показатели, такие как электропроводимость и диаметр, в образцах без СО2 и с СО2 не настолько внушительно отличаются, чтобы быть на 100% уверенными в безоговорочной победе. Однако важность применения СО2 в процессе создания одностенных углеродных нанотрубок однозначно неоспорима. Данная методика требует дальнейшего изучения и доработки.

Разная концентрация СО2 изменяет диаметр нанотрубок и показатели хиральности, что в результате может дать несколько цветовых вариантов пленок: зеленый, коричневый и серый. Помимо прочего, ученым удалось успешно создать нанотрубки, пленки из которых отличаются по цвету ввиду различий в свойствах. Цветовое разнообразие таких материалов открывает новые пути их применения, но и в существующих также произойдут изменения.

Данное исследование это яркий пример неординарного и новаторского подхода к решению «старого» вопроса и демонстрация всем известной истины «все гениальное — просто».

Вам нравятся наши статьи? Спасибо, что остаётесь с нами. Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? Хотите видеть больше интересных материалов? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

3 месяца бесплатно при оплате новых Dell R630 на срок от полугода — 2 х Intel Deca-Core Xeon E5-2630 v4 / 128GB DDR4 / 4х1TB HDD или 2х240GB SSD / 1Gbps 10 TB — от $99,33 месяц, только до конца августа, заказать можно тут.

класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки? Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть