Хабрахабр

Не луноходы и не джокеры. Что мы знаем о роботах на Фукусиме

И затем почти повторилась 12 марта 2011 года. Одна из тяжелейших техногенных катастроф в истории человечества произошла 26 апреля 1986 года. Сериал «Чернобыль», снятый HBO, вновь подогрел интерес к истории аварии на ЧАЭС и напомнил о том, с каким трудом удалось остановить выброс радионуклидов из разрушенного реактора в атмосферу. Как вы могли догадаться, речь идет об авариях на Чернобыльской атомной электростанции в СССР и АЭС Фукусима-1 в Японии. Япония ведёт многочисленные эксперименты с разнообразными роботами, которые могут оттянуть необходимость привлечения людей к ликвидации.
Происшествия на Чернобыльской АЭС и Фукусиме имеют разные причины и разную хронику событий, но общее в них одно — обширная территория вокруг станций заражена, что делает невозможным долговременное безопасное проживание на ней, а о полной расчистке энергоблоков станций пока не идёт и речи. Отдельно там говорилось о неудачном применении роботов и вынужденному обращению к помощи людей. В Японии пошли другим путём. В обоих случаях человечество оказалось не готово к ликвидации последствий — сотни тысяч человек в СССР работали над дезактивацией зоны отчуждения и строительством защитного саркофага над реактором.

Справка: нормы облучения

Фраза о радиационном фоне из сериала «Чернобыль» успела стать мемом в зарубежном интернете: «3,6 рентген — ничего хорошего, но и не ужасно». Действительно, стоит ли бояться этих самых 3,6 рентген в час или это и правда не ужасный фон? Чтобы лучше понимать замеры с Фукусимы, приведённые в посте ниже, надо сперва разобраться со шкалой доз и их влиянием на организм.

Сейчас вместо него применяется Зиверт (Зв). Хорошо знакомый россиянам рентген (Р) — это устаревшая единица измерения радиационного фона, не входящая в систему СИ. То есть, 3,6 Р/ч — это 0,036 Зв/ч или 36 мЗв/ч. Упрощенно говоря, 1 Зв равен 100 Р. В среднем городской фон у нас колеблется на уровне 12-20 мкР/ч или 0,12-0,2 мкЗв/ч. В России на некоторых НИИ можно встретить табло с текущим фоном, измеряемым в рентгенах. Эта радиация поступает из космоса, исходит от почвы, воды, присутствует в воздухе, благодаря газу радону. От естественного радиационного фона на нашей планете человек получает дозу порядка 2,4 мЗв в год (зависит от страны и высоты над уровнем моря).

А теперь небольшая таблица с дозами, получаемыми нами в течение жизни (указанное ниже разовое облучение — это получение соответствующей дозы в период до 4 суток):

0,036 Зв/ч (36 мЗв/ч) действительно не являются ужасным фоном в случае аварии, для развития лёгкой лучевой болезни требуется нахождение в опасной зоне больше суток, а ремонтные работы в течение нескольких часов вполне безопасны и допустимы. Вернемся к упомянутым в сериале 3,6 Р/ч. Четыре минуты при таком фоне влекут неизбежную смерть. А теперь вспомним, как чуть позже сказали в сериале, что фон у реактора составляет не 3,6, а 15 000 рентген (150 Зв/ч). После двух минут только скорейшая квалифицированная медпомощь может дать шанс на спасение, а для получения лучевой болезни хватит и 25 секунд.

Toshiba на Фукусиме

Сотрудничество Toshiba и Токийской энергетической компании (TEPCO) началось еще на этапе строительства АЭС Фукусима-1. Toshiba отвечала за строительство реакторных установок типа BWR для третьего и пятого энергоблоков станции, введенных в эксплуатацию в 1976 и 1978 годах соответственно. В числе достоинств реакторов BWR значится меньшее давление пара в первом контуре, чем, например, у советского ВВЭР, и меньшие рабочие температуры. К недостаткам относят сложность изготовления, необходимость в очень габаритном корпусе, сложность управления и радиолиз в тепловыделяющих элементах, влекущий выработку взрывоопасного водорода.

Землетрясение с рекордной магнитудой 9,0-9,1 привело к остановке реакторов, а последовавшее за ним цунами затопило территорию Фукусимы-1 и аварийные генераторы, питающие насосы охлаждения реактора. Если к аварии на ЧАЭС привел недостаток конструкции реактора РБМК, давший о себе знать во время нарушений при проведении испытаний, то к инциденту на Фукусиме привели сразу два стихийных бедствия. В первом, втором и третьем энергоблоках произошло расплавление активной зоны реакторов и утечка ядерного топлива. Реакторы станции, которые даже в случае аварийной остановки не остывают сразу, остались без притока холодной воды, что вызвало её выкипание, повышение давление пара и температуры внутри, образование водорода из-за соприкосновения пара с цирконием в ТВЭЛах (пароциркониевая реакция) и его последующий взрыв. На Фукусиме радионуклиды утекают в океан вместе с охлаждающей водой, на ЧАЭС во время пожара они попали в атмосферу и распространились по Европе.

Пострадал и четвертый энергоблок, но в его реакторе не было ядерного топлива, поэтому только произошел пожар.
Хроника случившегося на трех энергоблоках. Сейчас этой работой на ФАЭС занимаются роботы и телеуправляемые машины — отправлять в зону аварии людей слишком опасно, в некоторых местах станции фон может убить человека всего за несколько минут. Источник: Roulex_45 / Wikimedia

Для ликвидации аварии на Фукусиме необходимо составить карту повреждений, найти расплавленное топливо и места его утечки, удалить отработанное ядерное топливо из реакторов и бассейнов выдержки, разобрать завалы — то есть, провести колоссальную работу под столь же колоссальным радиационным фоном.

Мы расскажем о нескольких самых заметных роботах Toshiba, внесших свой небольшой, но важный вклад в дело ликвидации последствий аварии. Toshiba совместно с Международным исследовательским институтом по выведению из эксплуатации ядерных реакторов (IRID) занимается разработкой роботов под конкретные задачи — обследование энергоблоков Фукусимы и деконтаминация (очистка) помещений от радиоактивных загрязнений.

Это в корне неверно. Кстати, существует ошибочное мнение, что на Фукусиме при ликвидации не учли ценного опыта Чернобыля. После аварии в Японии Ларион Лебедев усовершенствовал технологию выделения трития из радиоактивной воды, что позволило приступить к очистке огромных объёмов тяжёлой воды, оставшейся после охлаждения разрушенных реакторов. Сразу после аварии была создана группа японо-российских экспертов в области атомной энергетики по вопросам ликвидации последствий аварии на Фукусиме-1, среди которых присутствовал Ларион Александрович Лебедев — непосредственный участник работ на ЧАЭС с лета 1986 года, бывший в команде физиков МИФИ, внесших огромный вклад в исследование радиационной обстановки и строительство саркофага. От имени правительства Японии Ларион Александрович был награждён Орденом Восходящего солнца, вручаемым за военные и гражданские заслуги.

Четвероногий разведчик

Первым роботом Toshiba, оказавшимся на ФАЭС, стал безымянный четвероногий дрон, разработка которого началась сразу после аварии. Его миссией, как и у всех роботов, запущенных на электростанцию в первые годы, была радиационная разведка и оценка повреждений внутри энергоблоков.

Защищенная электроника была рассчитана на работу при излучении в 100 мЗв/ч на протяжении года (при 10-часовом рабочем дне) и при гораздо большем фоне в течение коротких промежутков. На шасси установили дозиметр и шесть камер для осмотра помещений станции. Робот двигался со скоростью около 1 км/ч, чего достаточно при исследовании разрушенного энергоблока. Правда, одного заряда аккумулятора хватало только на 2 часа автономного существования. Управление осуществлялось по радиоканалу с резервированием на случай помех.

На дне устройства крепился небольшой разведывательный дрон, который мог отсоединяться от своего носителя и проползать в узкие места, где рослый робот не мог пройти. Его предполагалось использовать для поиска протечек охлаждающей воды под трубами обвязки реактора.

Нельзя сказать, что на робота возлагались большие надежды: ещё на стадии демонстрации журналисты указывали на медлительность машины — подъём на каждую ступеньку лестницы занимал до одной минуты, а при постановке ноги на нетвердую поверхность робот мог перевернуться на бок.

TEPCO опубликовала отчёт, как 11 декабря 2012 робот сделал снимки одной из труб, подтвердив отсутствие протечек. Однако первый экспериментальный механизм Toshiba для ФАЭС все-таки смог проникнуть в здание второго энергоблока и провести небольшую разведку. Но вскоре при попытке дальнейшего осмотра помещений робот потерял равновесие на лестнице и упал на бок. В марте 2013 года он побывал внутри ещё пять раз. Из-за отсутствия механизма переворачивания четвероногий разведчик так и остался лежать во втором блоке.

Складной исследователь Scorpion

Следующим роботом компании, в котором были учтены все недостатки предыдущей модели, стал Toshiba Scorpion, названный так за свою форму (заглавное фото). Он разрабатывался для очень непростой задачи — исследования днища реактора и поиска топливных стержней, а эта миссия подразумевает работу при огромном радиационном фоне. Scorpion был избавлен от ног, которые заменили на гусеницы, а для компактности конструкцию сделали складной — машину предполагалось забрасывать в реактор через проходы для загрузки топливных стержней. В рабочем режиме робот как бы поднимает свой хвост-манипулятор, двигающийся по трем осям на манер скорпионьего, на конце которого вместо жала приспособлена камера и светодиоды подсветки. Ещё одна камера установлена на передней части и всегда смотрит вперед.

К тому же, робот сделан возвращаемым, он не должен оставаться в реакторе после передачи показаний. Scorpion управляется оператором через кабель, поэтому проблем с питанием и передачей сигнала нет. Опрокидывание ему не страшно, «хвост» с камерой возвращает робота в нормальное положение.

В феврале 2017 года робот отправился к реактору, где замерил фон и снял видео. В течение нескольких лет Scorpion дорабатывался для того, чтобы наконец попасть внутрь ФАЭС — со временем он получил маленькую водяную пушку для расчистки пути, ковш и резак для работы с кориумом. В соседнем помещении, где находились рабочие, загружавшие робота в трубу, фон составлял 6 мЗв/ч. Дозиметр показал впечатляющие 210 Зв/ч (21 000 Р).

ROV: маленькая подводная лодка


Маленькая подводная лодка с видеокамерами, на которые возложены большие надежды. Источник: Toshiba

Дистанционно управляемое подводное средство или сокращенно ROV — первый плавающий робот Toshiba, построенный для изучения реактора третьего энергоблока, нижняя часть которого скрыта под шестиметровой толщей воды. Эта маленькая подводная лодка с размерами 30 х 13 см и массой 2 кг несёт на себе две камеры и подсветку, управляется по кабелю и может перемещаться под водой в любом направлении с высокой точностью. Устройством управляет оператор, а сигнал и питание подводятся по длинному кабелю. Чтобы провод не запутался и не зацепился за обломки, Toshiba разработала особое покрытие с минимальным трением, а на самого ROV установили два мощных двигателя, чтобы робот мог спокойно тащить за собой кабель.

Кстати, диаметр ROV в 14 см был обусловлен узким входным отверстием в корпус реактора третьего энергоблока, поэтому инженерам Toshiba пришлось потрудиться, чтобы уместить в такой компактный корпус электронику, защиту и двигатели. По окончанию двухмесячного интенсивного курса тренировок операторов, Toshiba ROV отправился на ФАЭС. Робот побывал в реакторе 19, 21 и 22 июля 2017 года и успешно осмотрел разрушенные внутренности.

Магнитный SC-ROV

Еще одним труднодоступным местом, в котором скопилась вода с радионуклидами, стали тороидальные камеры сброса давления, расположенные ниже реактора. Необходимо было послать робота для поиска протечек под камерой, но дело осложнялось тем, что контайнмент был затоплен — от робота требовалось осмотреть трубы, погруженные в мутную воду. Плавающие устройства для этого не подходили, был необходим зонд, который закрепился бы на трубе и смог ехать по ней, не соскальзывая даже под большим углом.

С помощью магнитов. Как закрепить робота на стальной трубе, чтобы тот не скатывался? Оно представляет собой шасси с колёсами из мощных неодимовых магнитов. Устройство SC-ROV от Toshiba создавалось специально под параметры камеры сброса давления. С помощью четырех камер и маркера оператор может перемещаться по поверхности погруженной под воду трубы и отмечать найденные отверстия.

Но реальные условия оказались куда жестче.
SC-ROV во время демонстрации отлично держался магнитами за наклонную поверхность. Во-первых, из-за мутности воды дальность видимости не превышала 30-35 см, что значительно тормозило поиски. Источник: IRID

По результатам работы SC-ROV в 2014 году утечек найдено не было, но обнаружились проблемы в эксплуатации устройства. Во-вторых, из-за неких дефектов поверхности трубы робот всё же соскальзывал с нее при наклоне до 120°.

Камера для поиска кориума

Предыдущие поисковые миссии продемонстрировали угнетающую картину — ядерное топливо в реакторе второго энергоблока вышло за пределы корпуса реактора. Фотографии проплавленной решётки на дне контайнмента однозначно давали понять, что топливо уже где-то на дне. Но задержала ли его защитная оболочка или кориум ушел в грунт? Нужно было послать нового робота в самое «пекло» бывшего реактора к невероятно фонящему топливу.

Источник: TEPCO

Роботы на гусеничном ходу работают только на ровном полу, а подводной лодке нужна толща воды.
Расплавленная решётка внутри контайнмента второго реактора — точно над приводом стержней системы управления и защиты. Вне зависимости от угла входа трубы в контайнмент, камера принимает строго вертикальное положение — основной блок удерживается управляющим кабелем, то есть камера как бы «висит на проводе». В Toshiba придумали телеуправляемую камеру, закрепленную на конце пятиметровой телескопической трубы. На самом деле на устройстве сразу две камеры — непосредственно рабочая и камера для ориентирования. Ее объектив вращается на 360° по горизонтали и 120° по вертикали. Устройство выдерживает поглощенную дозу до 1000 грей. Помимо объективов на блоке установлены подсветка, дозиметр и термометр.

Первая версия камеры отработала на Фукусиме в январе 2018 года, где успешно нашла кориум и замерила фон, составивший 530 Зв/ч (53 000 рентген). Но на этом работа не закончилась — потребовалось взять образцы на анализ. В обновленной версии устройства была усилена подсветка и добавлен раздвижной манипулятор. В феврале 2019 года телеуправляемая камера Toshiba впервые получила образец кориума из второго энергоблока.

Машина-уборщик

Помещения энергоблоков рано или поздно придётся дезактивировать, но сперва нужно составить карту загрязнений. Результаты многочисленных исследовательских миссий показали весьма безрадостную картину: вопреки ожиданиям, большинство радионуклидов осело не на полу и не на стенах, а на верхнеуровневых элементах, вроде трубопроводов и вентиляции — на них приходилось до 70% всего излучения. Деконтаминировать пол относительно просто, стены чуть сложнее, но как добраться до загрязнений на потолке и в хитросплетениях труб, учитывая, что высота потолков на первом этаже составляет 7-8 метров?

Источник: IRID

Toshiba разработала робота, оперирующего пушкой с сухим льдом — ледяная пудра покрывает поверхность, связывает радиоактивные частицы, а робот соскабливает ее и всасывает в себя.
«Уборщик» радионуклидов от Toshiba — поднимается на 8 метров в высоту и прилежно скоблит стены. Так как это ещё одна телеуправляемая машина, её оператор получает картинку аж с 22 камер одновременно. Механизм поднимает конструкцию на высоту до 8 метров. Производительность её невелика, но ценен даже маленький вклад в дело деконтаминации станции. Машина приступила к очистке энергоблоков в январе 2016 года.

Помощь, но не решение

С момента аварии на Чернобыльской атомной электростанции прошло 33 года, с тех пор технологии совершили колоссальный рывок. Сейчас в ликвидации последствий на Фукусиме участвуют десятки роботов и видов телеуправляемой строительной техники. На сайте TEPCO выложено множество отчётов, данные из которых в целом формируют весьма печальную картину: есть роботы и есть технологии, но все они и близко не подобрались к эффективности работы ликвидаторов ЧАЭС. Разработка и испытания роботов занимает месяцы и годы, а итог их работы — продвижение на десяток метров, сбор дозиметрических данных, мутное видео и частое прекращение миссий из-за непредвиденных проблем.

Но текущие планы TEPCO ясно дают понять, что по самым скромным оценкам ликвидация последствий аварии займёт по меньшей мере 30-40 лет. Каждый робот на Фукусиме — это сохранённые люди, а каждая человеческая жизнь стоит того, чтобы заниматься разработкой роботов. И это лишь подтверждает героизм и масштаб подвига советских ликвидаторов Чернобыля.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть