Главная » Хабрахабр » mmWave в смартфонах: как Qualcomm сделал невозможное возможным

mmWave в смартфонах: как Qualcomm сделал невозможное возможным

До настоящего времени сигналы mmWave не использовались для мобильной связи из-за многочисленных технических сложностей. Компания Qualcomm недавно представила первые в мире полностью интегрированные радиочастотные модули 5G NR (mmWave) и sub-6 ГГц для мобильных устройств. О том, как преодолевались трудности и какое влияние миллиметровой диапазон окажет на 5G – в нашем обзоре ниже.
К 2020 году мобильный трафик передачи данных во всем мире вырастет по сравнению с 2014 годом в 30 раз и составит 8 миллиардов гигабайт в день. Поэтому многие в отрасли были уверены, что это попросту невозможно. При этом более 86% пользователей смартфонов, по результатам опросов, хотели бы, чтобы в следующем смартфоне, который они купят, интернет работал бы быстрее, а 50% готовы приобрести смартфон с 5G, когда он будет доступен. 75% этого трафика придётся на стриминг мультимедийных данных, следует из прогноза Nokia Bell Labs, опубликованного в 2016 году и пока что сбывающегося.

Они обеспечат в 10 раз более высокие скорости передачи данных по сравнению с LTE и в 10 раз более быстрый отклик (под быстрым откликом в отчётах понимают меньшие пинги), но пока что очень многие производители мобильных устройств рассчитывали на то, что 5G будет использоваться для интернета вещей, для приложений удалённого управления, для виртуальной реальности — в общем, для чего угодно, только не для обычных потребительских устройств, которые мы носим каждый день с собой: смартфонов и планшетов. Сети пятого поколения уже на подходе. Тому есть две фундаментальных причины.

В чём проблемы?

Все преимущества 5G в виде огромных скоростей передачи пользовательских данных и низких пингов и принципиально бо́льшая ёмкость сети, позволяющая обеспечить такой уровень сервиса огромному количеству абонентов одновременно, реализуемы не при помощи какого-то волшебства, а в первую очередь за счёт использования на порядки более широкой полосы частот по сравнению с тем же LTE. Где взять эти частоты, в общем-то, тоже понятно: нужно использовать всё более и более высокие диапазоны. Так и добрались до миллиметровых волн (чем выше частота, тем меньше длина волны, это мы помним ещё из школьного курса физики) или mmWave: так принято называть диапазон примерно от 24 до 300 ГГц. Для 5G будет использоваться «низкочастотная» часть этого диапазона, в частности, уже выделены конкретные полосы частот, например, 26,50–29,50 ГГц (n257), 24,25–27,50 ГГц (n258). В России для тестирования 5G был выделен интервал 25,25–29,50 ГГц.

Оба диапазона будут использоваться для передачи радиоволн 5G NR; NR в данном случае — это New Radio, то есть, новый протокол обмена между базовой станцией и конечным устройством. Одновременно с «высокими» частотами mmWave в 5G будут также использоваться частоты ниже 6 ГГц, они же Sub-6 (например, в Европе и, надеемся, в России это 3,4–3,8 ГГц) — они предназначены в первую очередь для обеспечения более широкого, чем в случае миллиметрового диапазона, покрытия, то есть для строительства макросетей; о скоростях в несколько десятков гигабит в секунду, как в mmWave, тут речи не идёт.

Законам физики mmWave не противоречит, но его действительно сложно было реализовать в компактном устройстве типа смартфона. Так в чем же сложность с миллиметровым диапазоном? А есть ещё радиомодули — то есть, усилители, полосовые фильтры и т.п., которые как раз и считались невозможными для реализации в форм-факторе смартфона из-за размера, веса и энергопотребления. Дело в том, что модемы, поддерживающие и Sub-6, и mmWave — это не законченное готовое устройство, каким его представляет себе обыватель, а только модулятор/демодулятор в классическом понимании.

Ключевое слово — фиксированных, поскольку стационарное оборудование не имеет ограничений по размерам и весу, а также энергопотреблению и, конечно, может быть установлено таким образом, чтобы эту прямую видимость обеспечить. Вообще, частоты выше 24 ГГц использовались в радиосвязи достаточно давно, например, для радиорелейных линий, работающих на расстоянии прямой видимости, спутниковых каналов и тому подобных фиксированных решений.

Поэтому для мобильной связи миллиметровые волны никогда не использовались. Для столь высоких частот характерно значительное затухание сигнала с увеличением расстояния, а также большая чувствительность к препятствиям: человеческое тело, голова и даже рука могут стать непреодолимой помехой для распространения волн, а про способность проникать внутрь зданий и говорить нечего. Считалось, что в габаритах телефона любое решение или не обеспечит стабильной связи, или будет моментально съедать заряд батареи, а вероятнее всего, и то, и другое одновременно.

Исследовательский прототип модема mmWave (слева) 5G и референсный смартфон, в который можно встроить коммерческий 5G-модем с поддержкой mmWave

А поскольку операторы реализуют это очень нескоро, то и встраивать поддержку этих диапазонов в смартфоны не нужно. Второй барьер на пути внедрения mmWave в смартфоны заключался в том, что эта технология подразумевает крайне плотную установку базовых станций: многие считают, что чуть ли не в каждой комнате в здании, а в городе — на каждом фонарном столбе с интервалом 150-200 метров друг от друга должна быть базовая станция, чтобы использование миллиметрового диапазона имело хоть какой-то смысл.

Однако инженеры Qualcomm считают, что базовые станции mmWave нужны, по большому счету, только для обеспечения indoor-покрытия: не нужно вешать БС 5G под каждым кустом, для «коврового» покрытия на первых порах достаточно будет БС LTE, а позднее — Sub-6, требующих гораздо меньшей плотности установки (и тут грех не вспомнить статистику сотовых операторов, гласящую, что до 80% трафика передачи данных генерируется из помещений).

Кому проблема, а кому задача

В 2017 году на MWC в Барселоне Qualcomm показал работающий прототип системы передачи данных, работающей в mmWave на частотах 28 ГГц, в габаритах мобильного устройства.

Для формирования луча в трёхмерном пространстве и на базовой станции, и на мобильном устройстве используются антенные массивы с высокими коэффициентами усиления: от 128-ми до 256-ти и более элементов на БС и от 4-х до 32-х — на абонентском терминале. Благодаря использованию адаптивного бимформинга и бимтрекинга (формирования направленного «луча» сигнала между клиентским устройством и базовой станцией и отслеживания перемещения его относительно БС) удалось добиться стабильного соединения внутри движущегося автомобиля, в офисном здании (с прохождением сигнала через некапитальные стены) с мгновенным переключением «луча» на другую базовую станцию и защитой от блокировки «луча» телом или рукой, которой абонент держит смартфон. Грубо говоря, появилось препятствие (или даже пользователь по-другому перехватил свой смартфон) — и луч до БС пошёл не напрямую, а с отражением от ближайшей стены. Луч при этом может быть непрямым: антенные решётки управляют им с учётом переотражения волн от окружающих объектов.

Решение для миллиметрового диапазона реализовано на базе 5G-модема Snapdragon X50, поддерживающего установку нескольких антенных массивов под передней и задней панелями смартфона, которые создают практически сферическое покрытие и тем самым ликвидируют проблему затенения от руки, держащей смартфон

Модуль QTM052 поддерживает агрегацию до 800 МГц (8х100) в частотных диапазонах 26,5–29,5 ГГц (n257), 27,5–28,35 ГГц (n261) и 37–40 ГГц (n260). Модули оснащены встроенным трансивером, интегральной схемой управления питанием, радиокомпонентами входных каскадов и поддержкой фазированных антенных решеток. Они работают в диапазонах частот 3,4–4,2 ГГц (n77), 3,3–3,8 ГГц (n78) и 4,4–5,0 ГГц (n79) и могут использовать 100 МГц спектра. Модули QPM5650, QPM5651, QDM5650 и QDM5652 поддерживают интегрированную SRS-коммутацию, необходимую для оптимизации применений технологии Massive MIMO. Образцы антенных модулей QTM052 mmWave и радиомодулей QPM56xx в данный момент находятся на стадии отправки клиентам. Серия QPM отличается от серии QDM наличием встроенного усилителя мощности (PA).

Готовое к коммерциализации решение

Старожилы помнят, что тридцать лет назад примерно то же самое говорили про CDMA: мол, это будет слишком сложно или вообще не будет работать, давайте сделаем простой и топорный GSM. Однако у Qualcomm тогда получилось реализовать CDMA в мобильных устройствах и тот же CDMA-800 в девяностых (распространившийся в США, Корее и ряде других стран) по всем параметрам превосходил GSM. Когда пришло время сворачивать аналоговые сети, например, NMT-450, им на замену тоже пришёл CDMA — кстати, в России «Скай Линк» в CDMA-450 стал первым оператором мобильного ШПД: в начале нулевых там уже были скорости в пару мегабит в секунду, в то время как GSM-операторы едва начинали запускать EDGE. И в тех же нулевых, когда разрабатывали 3G (UMTS), за основу взяли технологию, реализованную Qualcomm ещё в 1989 году: WCDMA (Wideband CDMA) — это, по сути, тот же CDMA, только использующий широкую полосу частот для высокоскоростной передачи данных.

Этим летом прототипы с поддержкой wwWave оформились в готовое коммерческое решение для 5G-смартфонов, благодаря которому уже в следующем году выйдут первые серийные устройства. Теперь ситуация повторяется. Они совместимы с 5G-модемами Qualcomm Snapdragon X50 и по сути представляют собой единственное, что нужно установить между модемом и антенной, причём модем поддерживает до четырёх таких модулей одновременно, что позволит задействовать различные диапазоны частот. Это первые полностью интегрированные модули 5G NR QTM052 для mmWave и радиомодули с поддержкой частот до 6 ГГц QPM56xx.

В общем мы очень ждем 2019 год, который обещает быть ярким на события в мире 5G.


Оставить комментарий

Ваш email нигде не будет показан
Обязательные для заполнения поля помечены *

*

x

Ещё Hi-Tech Интересное!

У нас DevOps. Давайте уволим всех тестировщиков

Можно ли автоматизировать всё, что угодно? Потом всех тестировщиков уволим, конечно. Зачем они теперь нужны, «ручного» тестирования не осталось. Правильно ведь? Здесь будут конкретные цифры и чисто практические выводы, как так получается, что у хороших специалистов всегда есть работа. Это ...

Современный PHP — прекрасен и продуктивен

Почти 8 месяцев тому назад я пересел с проектов python/java на проект на php (мне предложили условия от которых было бы глупо отказываться), и я внезапно не ощутил боли и отчаяния, о которых проповедуют бывшие разработчики на ПХП. И вот ...