Главная » Хабрахабр » Математика кожи: выращивание эпидермиса на основе математического моделирования

Математика кожи: выращивание эпидермиса на основе математического моделирования

В нашем теле много систем, от нервной до иммунной, каждая из которых выполняет свои определенные функции и связывается с другими системами, что позволяет организму эффективно функционировать. Организм человека можно спокойно сравнивать с очень сложным и порой запутанным механизмом, к которому не прилагалась инструкция, посему ученым приходится самим во всем разбираться. Всех тянет раскрыть секреты нашего мозга, который так часто сравнивают по загадочности с Вселенной. В научно-исследовательском сообществе львиная доля внимания приходится на нервную систему. Сегодня мы с вами рассмотрим исследование, объединившее в себе математику, биохимию и много любопытства. Но другие системы не менее интересны, сложны и важны. Как математика помогла ученым понять чего им не хватало в процессе выращивания кожи и что у них получилось в результате? А целью сего исследования является эпидермис, то бишь кожа человека. Поехали. На эти и другие вопросы мы попытаемся ответить с помощью доклада исследовательской группы.

Пожизненная «броня»

Кто-то может считать ее просто оболочкой, а кто-то и вовсе «мешком для костей». Кожа человека не так проста, как может показаться на первый взгляд. Но оставим в сторонке высказывания самого аморального робота в мире по имени Бендер и углубимся в структуру кожи человека.

Во-первых, кожа это самый большой орган человеческого тела (других существ не будем затрагивать, учитывая рассматриваемое исследование), состоящий из трех основных подсистем: эпидермис (внешний слой), дерма (соединительная ткань между верхним слоем кожи и органами) и подкожно-жировая клетчатка (терморегулирующий и защитный слой с функцией «хранилища» питательных веществ).


Строение кожи человека.

Поскольку в исследовании ученые «колдуют» над эпидермисом, мы рассмотрим этот слой подробнее.

В каждом из слоев имеются клетки, которые являются главными «испытуемыми» в рассматриваемом нами исследовании — кератиноциты. Эпидермис человека, если вы одинаково любите анатомию и кулинарию, напоминает торт Наполеон, ибо состоит из пяти слоев. В эпидермисе они вообще занимают львиную долю — порядка 90% от всех клеток.

Функции кератиноцитов разнятся в зависимости от принадлежности к определенному слою:

  • базальный — самый близкий к дерме слой, в котором такие клетки как кератиноциты именуются базальными, что вполне логично. Эти клетки в сопряжении со стволовыми занимаются важным процессом — регенерацией эпидермиса. Также в цитоплазме кератиноцитов имеются меланосомы — гранулы меланина, полученные от меланоцитов (клеток), которые защищают нас от воздействия ультрафиолетового излучения.
  • шиповатый слой получил свое колючее название за счет необычной структуры клеток кератиноцитов, имеющих шипообразные отростки для соединения друг с другом. В цитоплазме местных кератиноцитов происходит синтез кератина, участвующего в формировании волос и ногтей. С биологической точки зрения, кератин уступает по физической прочности только хитину. Помимо этого тут есть и кератиносомы, которые делают нашу кожу гидрофобной.
  • зернистый слой — кератиноциты также обладают кератиносомами, то есть препятствуют обезвоживанию кожи. Также кератиноциты в данном слое синтезируют некоторые белки.
  • блестящий слой назван так, поскольку при микроскопии не выявляются клетки, а сам слой похож на однородную полоску розового цвета. Так оно и есть — ядра, органеллы и межклеточные соединения кератиноцитов в данном слое разрушаются. При этом имеется вещество, связывающее кератиноциты (или то, что от них осталось). Это делает кожу прочной.
  • роговой — наружный слой эпидермиса, контактирующий с окружающей средой. А еще его можно назвать самым настоящим клеточным кладбищем, ибо образован он из мертвых кератиноцитов (именуемых роговыми чешуйками), которые постоянно обновляются. Это обеспечивает эффективную защиту от внешних факторов.


Клетка кератиноцита

При повреждении кожи клетки кератиноцитов начинают активно делиться и мигрировать к области травмы, где происходит эпителизация, то есть ранка начинает зарастать. Стоит также упомянуть и тот факт, что кератиноциты участвуют и в заживлении ран.

Универсальные солдаты среди клеток эпидермиса, никак иначе. Как мы можем понять по этим слоям, кератиноцитов много и они выполняют разные функции, когда работают совместно с клетками другого типа.

А в том, что нормальный слой эпидермиса человека примерно 100 мкм в толщину, а вот искусственный (созданный посредством пассирования кератиноцитов) всего лишь 10 мкм. В чем же проблема исследования, спросите вы?

Пассирование клеток* — отбор необходимого числа клеток для их дальнейшего выращивания на субстрате (например, в чашке Петри).

Такой эпидермис попросту будет неэффективен, как танк из папье-маше. И вот тут может помочь математика, а именно математическая модель. О ней и поговорим далее.

Основа исследования

В данном же исследовании была разработана новая методика эпидермального гомеостаза, в основе которой лежит именно математическая модель распределяемых в базальном слое кератиноцитов, полученных из стволовых клеток. Ученые и раньше использовали математические модели в качестве основы процесса создания человеческого эпидермиса. Стоит отметить, что в модели также учитывались динамические процессы в эпидермисе (миграция и дифференцировка клеток кожи) и внутриклеточные процессы, связанные с Ca2+.

Данная математическая модель позволила понять, что важнейшую роль в синтезе эпидермиса необходимой толщины и структуры играет распределение стволовых клеток и структура базальных мембран, отделяющих соединительную ткань от эпителия.

Для достижения необходимого результата ученые применили синусоидальную модуляцию для формы базальной мембраны, изменяя амплитуду и длину волны. Если же более конкретно говорить о таком показателе как толщина, то именно базальные мембраны играют главную роль. То есть волнообразность папиллярного слоя, расположенного над дермой и под эпидермисом, является критически важной для создания модели эпидермиса, приближенной к реальным физиологическим показателям. В результате чего было обнаружено, что для стабильной структуры эпидермиса необходимой толщины требуется волнистые базальные мембраны с большой амплитудой и короткой длиной волны.

Соответственно, толщина этого слоя также должна учитываться в экспериментальной модели для более реалистичного воссоздания эпидермиса. Помимо толщины и прочности кожа человека обладает еще и гидрофобностью, которая зависит от толщины рогового слоя.

Реализация всего этого осуществлялась путем посева пассированных кератиноцитов на волнистой поверхности полиэфирной основы в открытых чашках Петри. Объединив все желаемое и необходимое, ученые спроектировали модель для демонстрации возможности создания приближенного к реальности эпидермиса, включающего в себя роговой слой и межклеточную пластинчатую липидную структуру.

Результаты были весьма успешны, чем подтвердили не только полноценность и корректность данного метода выращивания, но и важность использования математических моделей, как инструментов прогнозирования процессов.

Результаты исследования


Изображение №1

На изображениях выше показаны результаты моделирования и результаты выращивания эпидермиса на основе этого моделирования.

В первом случае имеется плоская базальная мембрана, во втором — синусоидальная, которая и позволила увеличить толщину и прочность эпидермиса. Исследователи обращают наше внимание на два очень показательных изображения ( и ).

Для этого была проанализирована структура паппилярного слоя, толщина которого у человека составляет 51 мкм, а интервал «волнистости» — 105 мкм (анализировалась кожа на брюшной полости, средний возраст участников исследования — 36. Но это лишь модель, хоть и с очень заманчивыми результатами, для получения которых необходимо установить какие параметры должна иметь основа для посева (полиэфир). 3 года).

В самом верху изображения («Control») — эпидермис без волнистой основы выступает как контрольная группа для сравнения результатов. На изображении показаны снимки (цвет получен за счет гематоксилина и эозина) полученного эпидермиса при разных вариантах основы (#200, #255, #300, #350, #460 и #480).

Живой слой эпидермиса на основе #255 был толще, чем на основе #200 и #300. Самыми интересными для ученых стали варианты #200, #255 и #300, показавшие хорошую толщину в сравнении с контрольным образцом. Посему именно этот вариант и был выбран для дальнейшего изучения.

Коротенький вывод — волнообразная основа для посева приводит к увеличению числа живых клеток эпидермиса и к его утолщению и уплотнению, что приближает выращенный образец по показателям к реальному человеком эпидермису.


Изображение №2

Дабы проверить нормально ли протекала экспрессия (синтез) этих белков, ученые провели иммуногистохимическое исследование эпидермиса, выращенного на основе #255. Одну из ключевых ролей в эпидермисе играют структурные белки филаггрин, лорикрин, клаудин 1 и ZO-1.

А экспрессия клаудина 1 прошла в клеточной мембране по всей плоскости эпидермиса (2D). Филаггрин (), лорикрин () и ZO-1 () были экспрессированы в верхнем слое эпидермиса.

Это говорит о том, что данный синтезированный эпидермис имеет хорошие защитные (от внешних факторов) характеристики. Обратите внимание на изображение 2G, на котором черной стрелкой и знаком «*» отмечен определенный слой — роговой.

Экспрессия клаудина 1 и ZO-1 была выявлена в обоих вариантах, но в #255 она была значительно сильнее. Иммуногистохимическое исследование проводилось также и с эпидермисом на основе #300, чтобы сравнить с показателями эпидермиса #255. График результатов данного теста () наглядно демонстрирует, что потеря воды у образца #255 значительно ниже, что еще раз подтверждайте его высокие барьерные (и защитные) характеристики. В подтверждение этому был проведен еще один тест — измерение трансэпидермальной потери воды контрольного и #255 образцов.


Изображение №3

Окрашивание образца посредством анти-бромдезоксиуридиновых антител (анти-BrdU) показало, что пролиферирующие клетки присутствуют только в нижней части контрольного образца (), в то время как в тестовом образце #255 эти же клетки были найдены и на волокнах полиэфирной основы (, черные стрелки).

Анализ показал наличие данных клеток на волокнах основы (3D, белые стрелки), что говорит о наличии на волокнах клеток, часть которых имеет пролиферирующие свойства. Исследователи также проверили белок CSPG4, который играет очень важную роль во взаимодействии клетки и субстрата.

Образец #255 показал уникальный результат — наличие K14 и BrdU на поверхности полиэфирной основы. В дополнение к этому было проведено тестирование с анти-бромдезоксиуридиновыми антителами и K14, который является маркером базального слоя эпидермиса. Это говорит о том, что пролиферирующие клетки распознают поверхность основы как базальный слой.

В контрольном образце YAP был локализован исключительно на базальном слое (). Следующим испытуемым стал белок YAP, который участвует в регуляции транскрипции (синтеза РНК в клетках за счет ДНК). А вот в тестовом образце YAP присутствовал вокруг волокон (3F, красные стрелки).

Применение малых интерферирующих РНК в процессе анализа активности белка YAP привел к дестабилизации трехмерной структуры (3G и 3H).

Но, несмотря на это, применение малых интерферирующих РНК никак не повлияло на пролиферацию кератиноцитов. В контрольном образце с применением малых интерферирующих РНК белок YAP был экспрессирован вокруг волокон (3I), а в тестовом образце экспрессия была незначительна (3J).

Для более детального ознакомления с нюансами и подробностями исследования настоятельно рекомендую заглянуть в доклад исследовательской группы и дополнительные материалы к нему.

Эпилог

Конечно, эти две науки очень часто ходят парой, если ученые намерены получить достоверные и адекватные результаты. Данное исследование совместило в себе биохимию и математику. Применение математического моделирования в данном случае помогло понять важность волнообразности основы для выращивания эпидермиса, что значительно увеличивает число живых клеток и, как следствие, толщину и прочность образца.

Те трудности, с которыми сталкивались исследователи ранее, более не будут мешать им продолжать более детальное изучение способов синтеза клеток и выращивания эпидермиса в таком виде, который будет максимально приближен к реальному. Сей труд по большей степени был нацелен на проверку работоспособности именно математической модели, а не самой техники выращивания эпидермиса.

Результаты этого труда вполне могут в дальнейшем стать достаточно важным шагом вперед как для трансплантологии, так и для исследований кожи человека в целом, а также подтолкнуть других исследователей более активно применять математическое моделирование как инструмент первоочередной важности.

Благодарю за внимание, оставайтесь любопытствующими и отличной всем рабочей недели, ребята.

Вам нравятся наши статьи? Спасибо, что остаётесь с нами. Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? Хотите видеть больше интересных материалов? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до весны бесплатно при оплате на срок от полугода, заказать можно тут.

класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки? Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп.


Оставить комментарий

Ваш email нигде не будет показан
Обязательные для заполнения поля помечены *

*

x

Ещё Hi-Tech Интересное!

[Из песочницы] ВИЧ – методы лечения от первых лекарств до сегодняшнего дня

Прежде, чем приступить к изложению материала, хотелось бы сказать несколько слов о себе: участник сообществ по борьбе с отрицанием ВИЧ („ВИЧ/СПИД диссидентством“): в 2016-2018 годах „ВИЧ/СПИД диссиденты и их дети“, с 2018 года – „ВИЧ/СПИД отрицание и альтернативная медицина“. Это ...

Изюминки прошедшей Moscow Python Conf++ 2019: трансформация в площадку для общения

Самыми горячими темами Moscow Python Conf++ оказались асинхронная разработка, а также сопоставление Python, его лучших практик и инструментария с аналогами из других языков, и его место в ландшафте современной разработки. Плюс мы пригласили выступить Бенджамина Петерсона, одного из разработчиков CPython, ...