Хабрахабр

Как работают поисковые системы

Мы разбирали старые письма и наткнулись на статью, которую писал Илья Сегалович iseg для журнала «Мир Internet» в далёком 2002 году. В ней он сравнивает интернет и поисковые системы с чудесами света, размышляет о поисковых технологиях и вспоминает их историю. Несмотря на загруженность по работе, Илья написал статью в рекордные сроки и даже снабдил достаточно подробным словарём терминов, который особенно интересно читать в наши дни. Нам не удалось найти электронную версию журнала со статьей, поэтому сегодня мы публикуем её в нашем блоге, первым автором которого, к слову, был Илья.

И как бы ни был реализован процесс поиска, на какой бы математической модели он ни основывался, идеи и программы, реализующие поиск, достаточно просты. В мире написаны сотни поисковых систем, а если считать функции поиска, реализованные в самых разных программах, то счет надо вести на тысячи. Так или иначе, но именно поисковые системы стали одним из двух новых чудес света, предоставив Homo Sapiens неограниченный и мгновенный доступ к информации. Хотя эта простота, относится, по-видимому, к той категории, про которую говорят «просто, но работает». Первым чудом, очевидно, можно считать Интернет как таковой, с его возможностями всеобщей коммуникации.

Поисковые системы в исторической перспективе

Существует распространенное убеждение, что каждое новое поколение программ совершенней предыдущего. Дескать, раньше все было несовершенно, зато теперь повсюду царит чуть ли не искусственный интеллект. Иная крайняя точка зрения состоит в том, что «все новое – это хорошо забытое старое». Думаю, что применительно к поисковым системам истина лежит где-то посередине.

Не алгоритмы и не структуры данных, не математические модели. Но что же поменялось в действительности за последние годы? Поменялась парадигма использования систем. Хотя и они тоже. Кроме появления фактора, невозможного в доинтернетовскую эру – фактора тотальной востребованности поисковых систем – стала очевидна еще пара изменений. Проще говоря, к экрану со строчкой поиска подсели домохозяйка, ищущая утюг подешевле, и выпускник вспомогательного интерната в надежде найти работу автомеханика. В ответе системы они ожидают увидеть слово, набранное в строке запроса. Во-первых, стало ясно, что люди не только «думают словами», но и «ищут словами». Мечты 60-х – 80-х об итеративном уточнении запросов, о понимании естественного языка, о поиске по смыслу, о генерации связного ответа на вопрос с трудом выдерживают сейчас жестокое испытание реальностью. И второе: «человека ищущего» трудно «переучить искать», так же как трудно переучить говорить или писать.

Алгоритм + Структура данных = Поисковая система

Как и любая программа, поисковая система оперирует со структурами данных и исполняет алгоритм. Разнообразие алгоритмов не очень велико, но оно есть. Не считая квантовых компьютеров, которые обещают нам волшебный прорыв в «алгоритмической сложности» поиска, и про которые автору почти ничего не известно, есть четыре класса поисковых алгоритмов. Три алгоритма из четырех требуют «индексирования», предварительной обработки документов, при котором создается вспомогательный файл, сиречь «индекс», призванный упростить и ускорить сам поиск. Это алгоритмы инвертированных файлов, суффиксных деревьев, сигнатур. В вырожденном случае предварительный этап индексирования отсутствует, а поиск происходит при помощи последовательного просмотра документов. Такой поиск называется прямым.

Прямой поиск

Простейшая его версия знакома многим, и нет программиста, который бы не написал хотя бы раз в своей жизни подобный код:
Несмотря на кажущуюся простоту, последние 30 лет прямой поиск интенсивно развивается. Было выдвинуто немалое число идей, сокращающих время поиска в разы. Эти алгоритмы подробно описаны в разнообразной литературе, есть их сводки и сопоставления. Неплохие обзоры прямых методов поиска можно найти в учебниках, например Седжвика или Кормена. При этом надо учесть, что новые алгоритмы и их улучшенные варианты появляются постоянно.

Норвежская поисковая система Fast (www.fastsearch.com) использовала чип, реализующий логику прямого поиска упрощенных регулярных выражений, и разместила 256 таких чипов на одной плате. Хотя прямой просмотр всех текстов – довольно медленное занятие, не следует думать, что алгоритмы прямого поиска не применяются в интернете. Это позволяло Fast-у обслуживать довольно большое количество запросов в единицу времени.

Например, весьма популярный, в том числе и в Рунете, glimpse. Кроме того, есть масса программ, комбинирующих индексный поиск для нахождения блока текста с дальнейшим прямым поиском внутри блока.

Например, неограниченные возможности по приближенному и нечеткому поиску. Вообще, у прямых алгоритмов есть принципиально беспроигрышные отличительные черты. Прямой же поиск работает непосредственно по оригинальным документам безо всяких искажений. Ведь любое индексирование всегда сопряжено с упрощением и нормализацией терминов, а, следовательно, с потерей информации.

Инвертированный файл

Эта простейшая структура данных, несмотря на свое загадочное иностранное название, интуитивно знакома как любому грамотному человеку, так и любому программисту баз данных, даже не имевшему дело с полнотекстовым поиском. Первая категория людей знает, что это такое, по «конкордансам» – алфавитно упорядоченным исчерпывающим спискам слов из одного текста или принадлежащих одному автору (например «Конкорданс к стихам А. С. Пушкина», «Словарь-конкорданс публицистики Ф. М. Достоевского»). Вторые имеют дело с той или иной формой инвертированного списка всякий раз, когда строят или используют «индекс БД по ключевому полю».

Проиллюстрируем эту структуру при помощи замечательного русского конкорданса – «Симфонии», выпущенной Московской патриархией по тексту синодального перевода Библии.

Для каждого слова перечислены все «позиции», в которых это слово встретилось. Перед нами упорядоченный по алфавиту список слов. Поисковый алгоритм состоит в отыскании нужного слова и загрузке в память уже развернутого списка позиций.

Во-первых, можно сэкономить на подробности самой позиции. Чтобы сэкономить на дисковом пространстве и ускорить поиск, обычно прибегают к двум приемам. Ведь чем подробнее задана такая позиция, например, в случае с «Симофонией» это «книга+глава+стих», тем больше места потребуется для хранения инвертированного файла.

Чаще же просто указывают только номер документа, скажем, книгу Библии, и число употреблений этого слова в нем. В наиподробнейшем варианте в инвертированном файле можно хранить и номер слова, и смещение в байтах от начала текста, и цвет и размер шрифта, да много чего еще. Именно такая упрощенная структура считается основной в классической теории информационного поиска – Information Retrieval (IR).

Вот как будет выглядеть такой список для нашей странички в предположении, что мы запоминаем позицию вплоть до номера главы: Второй (никак не связанный с первым) способ сжатия: упорядочить позиции для каждого слова по возрастанию адресов и для каждой позиции хранить не полный ее адрес, а разницу от предыдущего.

1],[+11],[0],[+2],[+4],[+2],[+4],.. ЖЕНЩИНА: [Быт.

Здесь уместно упомянуть коды Голомба или встроенную функцию популярного языка Perl: pack(“w”). Дополнительно на разностный способ хранения адресов накладывают какой-нибудь простенький способ упаковки: зачем отводить небольшому целому числу фиксированное «огромное» количество байт, ведь можно отвести ему почти столько байт, сколько оно заслуживает.

д. В литературе встречается и более тяжелая артиллерия упаковочных алгоритмов самого широкого спектра: арифметический, Хафман, LZW и т. На практике в поисковых системах они используются редко: выигрыш невелик, а мощности процессора расходуются неэффективно. Прогресс в этой области идет непрерывно.

В результате всех описанных ухищрений размер инвертированного файла, как правило, составляет от 7 до 30 процентов от размера исходного текста, в зависимости от подробности адресации.

Занесены в «Красную книгу»

Неоднократно предлагались другие, отличные от инвертированного и прямого поиска алгоритмы и структуры данных. Это, прежде всего, суффиксные деревья (см. книги Манбера и Гоннета), а также сигнатуры.

Мне доводилось встречать суффиксные индексы в отечественных поисковых системах. Первый из них функционировал и в интернете, будучи запатентованным алгоритмом поисковой сиcтемы OpenText.

Второй – метод сигнатур – представляет собой преобразование документа к поблочным таблицам хеш-значений его слов – «сигнатуре» и последовательному просмотру «сигнатур» во время поиска.

Широкого распространения ни тот ни другой метод не получили, а, следовательно, не заслужили и подробного обсуждения в этой небольшой статье.

Математические модели

Приблизительно 3 из 5 поисковых систем и модулей функционируют безо всяких математических моделей. Точнее сказать, их разработчики не ставят перед собой задачу реализовывать абстрактную модель и/или не подозревают о существовании оной. Принцип здесь прост: лишь бы программа хоть что-нибудь находила. Абы как. А дальше сам пользователь разберется.

Модель поиска – это некоторое упрощение реальности, на основании которого получается формула (сама по себе никому не нужная), позволяющая программе принять решение: какой документ считать найденным и как его ранжировать. Однако, как только речь заходит о повышении качества поиска, о большом объеме информации, о потоке пользовательских запросов, кроме эмпирически проставленных коэффициентов полезным оказывается оперировать каким-нибудь пусть и несложным теоретическим аппаратом. После принятия модели коэффициенты часто приобретают физический смысл и становятся понятней самому разработчику, да и подбирать их становится интересней.

Все многообразие моделей традиционного информационного поиска (IR) принято делить на три вида: теоретико-множественные (булевская, нечетких множеств, расширенная булевская), алгебраические (векторная, обобщенная векторная, латентно-семантическая, нейросетевая) и вероятностные.

Есть слово – документ считается найденным, нет – не найденным. Булевское семейство моделей, по сути, – первое, приходящее на ум программисту, реализующему полнотекстовый поиск. Собственно, классическая булевская модель – это мостик, связывающий теорию информационного поиска с теорией поиска и манипулирования данными.

Поэтому еще в 1957 году Joyce и Needham (Джойс и Нидхэм) предложили учитывать частотные характеристики слов, чтобы «… операция сравнения была бы отношением расстояния между векторами...». Критика булевской модели, вполне справедливая, состоит в ее крайней жесткости и непригодности для ранжирования. Ранжирование в этой модели основано на естественном статистическом наблюдении, что чем больше локальная частота термина в документе (TF) и больше «редкость» (то есть обратная встречаемость в документах) термина в коллекции (IDF), тем выше вес данного документа по отношению к термину. Векторная модель и была с успехом реализована в 1968 году отцом-основателем науки об информационном поиске Джерардом Солтоном (Gerard Salton)* в поисковой системе SMART (Salton's Magical Automatic Retriever of Text).

* Gerard Salton (Sahlman) 1927-1995. Он же Селтон, он же Залтон и даже Залман, он же Жерар, Герард, Жерард или даже Джеральд в зависимости от вкуса переводчика и допущенных опечаток.
http://www.cs.cornell.edu/Info/Department/Annual95/Faculty/Salton.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Salton:Gerald.html
http://www.cs.virginia.edu/~clv2m/salton.txt

Обозначение IDF ввела Karen Sparck-Jones (Карен Спарк-Джоунз) в 1972 в статье про различительную силу (term specificity). С этого момента обозначение TF*IDF широко используется как синоним векторной модели.

Релевантность в этой модели рассматривается как вероятность того, что данный документ может оказаться интересным пользователю. Наконец, в 1977 году Robertson и Sparck-Jones (Робертсон и Спарк-Джоунз) обосновали и реализовали вероятностную модель (предложенную еще в 1960-м), также положившую начало целому семейству. Вероятность оказаться релевантным для каждого следующего документа рассчитывается на основании соотношения встречаемости терминов в релевантном наборе и в остальной, «нерелевантной» части коллекции. При этом подразумевается наличие уже существующего первоначального набора релевантных документов, выбранных пользователем или полученных автоматически при каком-нибудь упрощенном предположении. Хотя вероятностные модели обладают некоторым теоретическим преимуществом, ведь они располагают документы в порядке убывания «вероятности оказаться релевантным», на практике они так и не получили большого распространения.

Их сводка вместе с обсуждением занимает в сжатом виде 35 страниц в книжке «Современный информационный поиск». Я не собираюсь вдаваться в подробности и выписывать громоздкие формулы для каждой модели. Продвинутые («альтернативные») модели каждого из семейств не считают слова запроса взаимонезависимыми, а, кроме того, позволяют находить документы, не содержащие ни одного слова из запроса. Важно только заметить, что в каждом из семейств простейшая модель исходит из предположения о взаимонезависимости слов и обладает простым условием фильтрации: документы, не содержащие слова запроса, никогда не бывают найденными.

Поиск «по смыслу»

Способность находить и ранжировать документы, не содержащие слов из запроса, часто считают признаком искусственного интеллекта или поиска по смыслу и относят априори к преимуществам модели. Вопрос о том, так ли это или нет, мы оставим за рамками данной статьи.

В теории информационного поиска данную модель принято называть латентно-семантическим индексированием (иными словами, выявлением скрытых смыслов). Для примера опишу лишь одну, пожалуй, самую популярную модель, работающую по смыслу. Элементом матрицы является частотная характеристика, отражающая степень связи слова и документа, например, TF*IDF. Эта алгебраическая модель основана на сингулярном разложении прямоугольной матрицы, ассоциирующей слова с документами. Вместо исходной миллионно-размерной матрицы авторы метода Furnas и Deerwester предложили использовать 50-150 «скрытых смыслов», соответствующих первым главным компонентам ее сингулярного разложения.

Величины si называются сингулярными числами матрицы и равны арифметическим значениям квадратных корней из соответствующих собственных значений матрицы AAT. Сингулярным разложением действительной матрицы A размеров m*n называется всякое ее разложение вида A = USV, где U – ортогональная матрица размеров m*m, V – ортогональная матрица размеров n*n, S – диагональная матрица размеров m*n, элементы которой sij= 0, если i не равно j, и sii = si >= 0. В англоязычной литературе сингулярное разложение принято называть SVD-разложением.

Давным-давно доказано, что если оставить в рассмотрении первые k сингулярных чисел (остальные приравнять нулю), мы получим ближайшую из всех возможных аппроксимацию исходной матрицы ранга k (в некотором смысле ее «ближайшую семантическую интерпретацию ранга k»). Уменьшая ранг, мы отфильтровываем нерелевантные детали; увеличивая, пытаемся отразить все нюансы структуры реальных данных.

Однако по причине малой ли осмысленности «смыслов», или по какой иной, но использование LSI в лоб для поиска так и не получило распространения. Операции поиска или нахождения похожих документов резко упрощаются, так как каждому слову и каждому документу сопоставляется относительно короткий вектор из k смыслов (строки и столбцы соответствующих матриц). Хотя во вспомогательных целях (автоматическая фильтрация, классификация, разделение коллекций, предварительное понижение размерности для других моделей) этот метод, по-видимому, находит применение.

Оценка качества

Consistency checking has shown that the overlap of relevant documents between any two assesors is on the order of 40% on average…cross-assesor recall and precision of about 65% …This implies a practical upper bound on retrieval system performance of 65% …
Donna Harman
What we have learned, and not learned, from TREC

Перевод

«… проверка устойчивости показала, что перекрытие релевантных документов между любыми двумя асессорами примерно 40% в среднем… точность и полнота измеренная между асессорами около 65%… Это накладывает практическую верхнюю границу на качество поиска в районе 65%...»

Какова бы ни была модель, поисковая система нуждается в «тюнинге» – оценке качества поиска и настройке параметров. Оценка качества – идея, фундаментальная для теории поиска. Ибо именно благодаря оценке качества можно говорить о применимости или неприменимости той или иной модели и даже обсуждать их теоретичеcкие аспекты.

Отсюда вытекает и естественная верхняя граница качества поиска, ведь качество измеряется по итогам сопоставления с мнением асессора. В частности, одним из естественных ограничений качества поиска служит наблюдение, вынесенное в эпиграф: мнения двух «асессоров» (специалистов, выносящих вердикт о релевантности) в среднем не совпадают друг с другом в очень большой степени!

Обычно для оценки качества поиска меряют два параметра:

  • точность (precision) – доля релевантного материала в ответе поисковой системы
  • полнота (recall) – доля найденных релевантных документов в общем числе релевантных документов коллекции

Именно эти параметры использовались и используются на регулярной основе для выбора моделей и их параметров в рамках созданной Американским Институтом Стандартов (NIST) конференции по оценке систем текстового поиска (TREC – text retrival evaluation conference)*. Начавшаяся в 1992 году консорциумом из 25 групп, к 12 году своего существования конференция накопила значительный материал, на котором до сих пор оттачиваются поисковые системы. К каждой очередной конференции готовится новый материал (так называемая «дорожка») по каждому из интересующих направлений. «Дорожка» включает коллекцию документов и запросов. Приведу примеры:

д.)
— WEB корпус (на последних конференциях он представлен выборкой по домену .gov)
— Распределенный поиск и слияние результатов поиска из разных систем — Дорожка произвольных запросов (ad hoc) – присутствует на всех конференциях
— Многоязычный поиск
— Маршрутизация и фильтрации
— Высокоточный поиск (с единственным ответом, выполняемый на время)
— Взаимодействие с пользователем
— Естестственно-языковая «дорожка»
— Ответы на «вопросы»
— Поиск в «грязных» (только что отсканированных) текстах
— Голосовой поиск
— Поиск в очень большом корпусе (20GB, 100GB и т.

* Материалы конференции публично доступны по адресу trec.nist.gov/pubs.html.

Не только поиск

Как видно из «дорожек» TREC, к самому поиску тесно примыкает ряд задач, либо разделяющих с ним общую идеологию (классификация, маршрутизация, фильтрация, аннотирование), либо являющихся неотъемлемой частью поискового процесса (кластеризация результатов, расширение и сужение запросов, обратная связь, «запросо-зависимое» аннотирование, поисковый интерфейс и языки запросов). Нет ни одной поисковой системы, которой бы не приходилось решать на практике хотя бы одну из этих задач.

Например, краткие аннотации состоящие из информативных цитат документа, которыми некоторые поисковые системы сопровождают результаты своей работы, помогают им оставаться на полступеньки впереди конкурентов. Зачастую наличие того или иного дополнительного свойства является решающим доводом в конкурентной борьбе поисковых систем.

Для примера рассмотрим «расширение запроса», которое обычно производится через привлечение к поиску ассоциированных терминов. Обо всех задачах и способах их решения рассказать невозможно. Локальные техники опираются на текст запроса и анализируют только документы, найденные по нему. Решение этой задачи возможно в двух видах – локальном (динамическом) и глобальном (статическом). По общепринятому мнению, глобальные модификации запросов через тезаурусы работают неэффективно, понижая точность поиска. Глобальные же «расширения» могут оперировать тезаурусами, как априорными (лингвистическими), так и построенными автоматически по всей коллекции документов. Этот подход широко используется в интернет-поисковиках в операциях сужения или расширения запроса. Более успешный глобальный подход основан на построенных вручную статических классификациях, например, ВЕБ-директориях.

Сравните, например, нейросетевую поисковую модель, в которой используется идея передачи затухающих колебаний от слов к документам и обратно к словам (амплитуда первого колебания – все тот же TF*IDF), с техникой локального расширения запроса. Нередко реализация дополнительных возможностей основана на тех же самых или очень похожих принципах и моделях, что и сам поиск. Последняя основана на обратной связи (relevance feedback), в которой берутся наиболее смыслоразличительные (контрастные) слова из документов, принадлежащих верхушке списка найденного.

К сожалению, локальные методы расширения запроса, несмотря на эффектные технические идеи типа «Term Vector Database» и очевидную пользу, все еще остаются крайне «дорогим» удовольствием (в смысле вычислительных ресурсов).

Лингвистика

Немного в стороне от статистических моделей и структур данных стоит класс алгоритмов, традиционно относимых к лингвистическим. Точно границы между статистическими и лингвистическими методами провести трудно. Условно можно считать лингвистическими методы, опирающиеся на словари (морфологические, синтаксические, семантические), созданные человеком. Хотя считается доказанным, что для некоторых языков (например, для английского) лингвистические алгоритмы не вносят существенного прироста точности и полноты, все же основная масса языков требует хотя бы минимального уровня лингвистической обработки. Не вдаваясь в подробности, приведу только список задач, решаемых лингвистическими или окололингвистическими приемами:

— автоматическое определение языка документа
токенизация (графематический анализ): выделение слов, границ предложений
— исключение неинформативных слов (стоп-слов)
лемматизация (нормализация, стемминг): приведение словоизменительных форм к «словарной», в том числе и для слов, не входящих в словарь системы
— разделение сложных слов (компаундов) для некоторых языков (например, немецкого)
дизамбигуация: полное или частичное снятие омонимии
— выделение именных групп

При этом под семантическим анализом чаще подразумевают какой-нибудь статистический алгоритм (LSI, нейронные сети), а если толково-комбинаторные или семантические словари и используются, то в крайне узких предметных областях. Еще реже в исследованиях и на практике можно встретить алгоритмы словообразовательного, синтаксического и даже семантического анализа.

Поиск в вебе

We disagree vehemently with this position. “Things that work well on TREC often do not produce good results on the web… Some argue that on the web, users should specify more accurately what they want and add more words to their query. If a user issues a query like «Bill Clinton» they should get reasonable results since there is a enormous amount of high quality information available on this topic”
Sergei Brin, Larry Page
The Anatomy of a Large-Scale Hypertextual Web Search Engine

Перевод

Мы категорически не согласны с такой точкой зрения. «То, что хорошо работает в TREC, часто не срабатывает в вебе… некоторые утверждают, что в вебе пользователи обязаны более точно специфицировать то, что им нужно, писать побольше слов в запросах. Если люди спрашивают «Билл Клинтон», они должны получать осмысленные результаты, так как в вебе полным полно качественной информации на эту тему...»

«I was struck when a Google person told me at SIGIR that the most recent Google ranking algorithm completely ignores anything discovered at TREC, because all the good Ad Hoc ranking algorithms developed over the 10 years of TREC get trashed by spam»
Mark Sanderson

Перевод

«Я был потрясен, когда кто-то из Google сказал мне, что они вообще не используют ничего наработанного в TREC, потому что все алгоритмы, заточеные на дорожке «произвольных запросов» спам расшибает вдребезги...»

Пора вернуться к теме, с которой началась эта статья: что же изменилось поисковых системах за последнее время?

п.) одного лишь текста документа. Прежде всего, стало очевидно, что поиск в вебе, не может быть сколько-нибудь корректно выполнен, будучи основан на анализе (пусть даже сколь угодно глубоком, семантическом и т. Положение на сайте, посещаемость, авторитетность источника, частота обновления, цитируемость страницы и ее авторов – все эти факторы невозможно сбрасывать со счета. Ведь внетекстовые (off-page) факторы играют не меньшую, а порой и бо́льшую роль, чем текст самой страницы.

Как следствие, они немедленно подверглись «атакам» недобросовестных авторов, желающих любой ценой оказаться в первых страницах результатов поиска. Cтав основным источником получения справочной информации для человеческого вида, поисковые системы стали основным источником трафика для интернет-сайтов. Искусственная генерация входных страниц, насыщенных популярными словами, техника клоакинга, «слепого текста» и многие другие приемы, предназначенные для обмана поисковых систем, мгновенно заполонили Интернет.

Необходимо поддерживать базу в состоянии максимальной свежести (на самом деле достаточно создавать иллюзию свежести – но это тема отдельного разговора), может быть учитывать индивидуальные и коллективные предпочтения пользователей. Кроме проблемы корректного ранжирования, создателям поисковых систем в Интернете пришлось решать задачу обновления и синхронизации колоссальной по размеру коллекции с гетерогенными форматами, способами доставки, языками, кодировками, массой бессодержательных и дублирующихся текстов. Многие из этих задач никогда прежде не рассматривались в традиционной науке информационного поиска.

Для примера рассмотрим пару таких задач и практических способов их решения в поисковых системах для интернета.

Качество ранжирования

Не все внетекстовые критерии полезны в равной мере. Именно ссылочная популярность и производные от нее оказались решающим фактором, поменявшим в 1999-2000 годах мир поисковых систем и вернувшим им преданность пользователей. Так как именно с ее помощью поисковые системы научились прилично и самостоятельно (без подпорок из вручную отредактированных результатов) ранжировать ответы на короткие частотные запросы, составляющие значительную часть поискового потока.

Примерно то, что в традиционном библиотековедении называют индексом цитирования. Простейшая идея глобального (то есть статического) учета ссылочной популярности состоит в подсчете числа ссылок, указывающих на страницы. Однако он легко подвергается накрутке, кроме того, он не учитывает вес самих источников. Этот критерий использовался в поисковых системах еще до 1998 года. В сочетании с поиском по лексике ссылок, указывающих на страницу (старая, весьма продуктивная идея, которая использовалась в гипертекстовых поисковых системах еще в 80-е годы), эта мера позволила резко повысить качество поиска. Естественным развитием этой идеи можно считать предложенный Брином и Пейджем в 1998 году алгоритм PageRank – итеративный алгоритм, подобный тому, что используется в задаче определения победителя в шахматном турнире по швейцарской системе.

Примерно по той же причине, что и локальные (т. Немного раньше, чем PageRank, был предложен локальный (то есть динамический, основанный на запросе) алгоритм учета популярности – HITS, который не используется на практике в основном из-за вычислительной дороговизны. динамические) методы, оперирующие словами. е.

Отмечу только, что расчет статической популярности не является самоценной задачей, он используется в многочисленных вспомогательных целях: определение порядка обхода документов, ранжирование поиска по тексту ссылок и т. Оба алгоритма, их формулы, условия сходимости подробно описаны, в том числе и в русскоязычной литературе. Формулы расчета популярности постоянно улучшают, в них вносят учет дополнительных факторов: тематической близости документов (например, популярная поисковая система www.teoma.com), их структуры и т.п., позволяющих понизить влияние непотизма. д. Интересной отдельной темой является эффективная реализация соответствующих структур данных.

Качество индекса

Хотя размер базы в интернете на поверхностный взгляд не кажется критическим фактором, это не так. Недаром рост посещаемости таких машин, как Google и Fast, хорошо коррелирует именно с ростом их баз. Основная причина: «редкие» запросы, то есть те, по которым находится менее 100 документов, составляют в сумме около 30% от всей массы поисков – весьма значительную часть. Этот факт делает размер базы одним из самых критичных параметров системы.

Не могу удержаться, чтобы не описать остроумный алгоритм, применяемый в современных поисковых системах для того, чтобы исключить «очень похожие документы». Однако рост базы, кроме технических проблем с дисками и серверами, ограничивается логическими: необходимостью адекватно реагировать на мусор, повторы и т.п.

Один и тот же документ на одном и том же сервере может отличаться по техническим причинам: быть представлен в разных кодировках и форматах; содержать переменные вставки – рекламу или текущую дату. Происхождение копий документов в Интернете может быть различным.

д. Широкий класс документов в вебе активно копируется и редактируется – ленты новостных агентств, документация и юридические документы, прейскуранты магазинов, ответы на часто задаваемые вопросы и т. д. Популярные типы изменений: корректура, реорганизация, ревизия, реферирование, раскрытие темы и т. Наконец, публикации могут быть скопированы с нарушением авторских прав и изменены злонамеренно с целью затруднить их обнаружение.

Кроме того, индексация поисковыми машинами страниц, генерируемых из баз данных, порождает еще один распространенный класс внешне мало отличающихся документов: анкеты, форумы, страницы товаров в электронных магазинах.

Однако этот метод не работает для выявления хотя бы чуть-чуть измененных документов. Очевидно, что с полными повторами проблем особых нет, достаточно сохранять в индексе контрольную сумму текста и игнорировать все остальные тексты с такой же контрольной суммой.

Вот его примерное описание. Для решения этой задачи Udi Manber (Уди Манбер) (автор известной программы приближенного прямого поиска agrep) в 1994 году предложил идею, а Andrei Broder (Андрей Бродер) в 1997-м придумал название и довел до ума алгоритм «шинглов» (от слова shingles, «черепички», «чешуйки»).

Десятисловия идут внахлест, с перекрытием, так, чтобы ни одно не пропало. Для каждого десятисловия текста рассчитывается контрольная сумма (шингл). Поскольку значения контрольных сумм распределены равномерно, критерий выборки никак не привязан к особенностям текста. А затем из всего множества контрольных сумм (очевидно, что их столько же, сколько слов в документе минус 9) отбираются только те, которые делятся на, скажем, 25. Ведь один совпавший шингл в выборке соответствует примерно 25 совпавшим десятисловиям в полном тексте! Ясно, что повтор даже одного десятисловия – весомый признак дублирования, если же их много, скажем, больше половины, то с определенной (несложно оценить вероятность) уверенностью можно утверждать: копия найдена!

Этот изящный алгоритм воплотил давнюю мечту доцентов: отныне мучительный вопрос «у кого студент списывал этот курсовик» можно считать решенным! Очевидно, что так можно определять процент перекрытия текстов, выявлять все его источники и т.п. (В том числе и в данной; надеюсь, что 0%; можете проверить.) Легко оценить долю плагиата в любой статье.

В нем используется тот факт, что большинство поисковых систем уже обладают индексом в виде инвертированного файла (или инвертированным индексом), и этот факт удобно использовать в процедуре нахождения почти-дубликатов. Чтобы у читателя не создалось впечатление, что информационный поиск исключительно западная наука, упомяну про альтернативный алгоритм определения почти-дубликатов, придуманный и воплощенный у нас в Яндексе.

Цена одного процента

Архитектурно современные поисковые системы представляют собой сложные многокомпьютерные комплексы. Начиная с некоторого момента по мере роста системы основная нагрузка ложится вовсе не на робота, а на поиск. Ведь в течение секунды приходят десятки и сотни запросов.

Сами компьютеры, начиная с 1997 года (поисковая система Inktomi) представляют собой обычные 32-битные машины (Linux, Solaris, FreeBSD, Win32) с соответствующими ограничениями по цене и производительности. Для того чтобы справиться с этой проблемой, индекс разбивают на части и раскладывают по десяткам, сотням и даже тысячам компьютеров. Исключением из общего правила осталась лишь AltaVista, которая с самого начала использовала относительно «большие» 64-битные компьютеры Alpha.

Первая техника состоит в разделении индекса на заведомо более релевантную и менее релевантную части. Поисковые системы для Интернета (и, вообще, все большие поисковые сиcтемы) могут ускорять свою работу при помощи техник эшелонирования и прюнинга. Pruning (от англ. Поиск сначала выполняется в первой части, а затем, если ничего не найдено, или найдено мало, поисковая система обращается ко второй части индекса. Бывает еще статический pruning, когда на основании некоторых допущений индекс сокращается за счет таких документов, которые заведомо никогда не будут найдены. отсечение, сокращение) состоит в том, чтобы динамически прекращать обработку запроса после накопления достаточного количества релевантной информации.

Для общения между поисковыми серверами и серверами, собирающими отклики и формирующими страницу выдачи разрабатываются специальные протоколы. Отдельная проблема – организовать бесперебойную работу многокомпьютерных комплексов, бесшовное обновление индекса, устойчивость к сбоям и задержкам с ответами отдельных компонент.

Поэтому, можно себе представить, как вычищается код, отвечающий за поиск и ранжирование результатов, как оптимизируется использование всех возможных ресурсов: каждого байта памяти, каждого обращения к диску. Заметьте, что один процент производительности (скажем, неудачно написанный оператор в каком-нибудь цикле) для десятитысячнокомпьютерной системы стоит примерно ста компьютеров.

Очевидно, системы, стартующие позже, имеют в этой ситуации преимущество. Решающее значение приобретает продумывание архитектуры всего комплекса с самого начала, так как любые изменения, например, добавление необычного фактора при ранжировании или сложного источника данных становится исключительно болезненной и сложной процедурой. В условиях жесткой конкуренции это порой неосуществимо. Но инертность пользователей весьма высока, так, например, требуется 2-4 года, чтобы сформированная многомиллионная аудитория сама, пусть и медленно, но перешла на непривычную поисковую систему, даже при наличии у нее неоспоримых преимуществ.

ГЛОССАРИЙ

Асессор (assesor, эксперт) – специалист в предметной области, выносящий заключение о релевантности документа, найденного поисковой системой.

Булевская модель (boolean, булева, булевая, двоичная) – модель поиска, опирающаяся на операции пересечения, объединения и вычитания множеств.

Векторная модель – модель информационного поиска, рассматривающая документы и запросы как векторы в пространстве слов, а релевантность – как расстояние между ними.

Вероятностная модель – модель информационного поиска, рассматривающая релевантность как вероятность соответствия данного документа запросу на основании вероятностей соответствия слов данного документа идеальному ответу.

Внетекстовые критерии (off-page, внестраничные) – критерии ранжирования документов в поисковых системах, учитывающие факторы, не содержащиеся в тексте самого документа и не извлекаемые оттуда никаким образом.

При попадании на них пользователя перенаправляют на целевую страницу. Входные страницы (doorways, hallways) – страницы, созданные для искусственного повышения ранга в поисковых системах (поискового спама).

Дизамбигуация (tagging, part of speech disambiguation, таггинг) – выбор одного из нескольких омонимов c помощью контекста; в английском языке часто сводится к автоматическому назначению грамматической категории «часть речи».

Дубликаты (duplicates) – разные документы с идентичным, с точки зрения пользователя, содержанием; приблизительные дубликаты (near duplicates, почти-дубликаты), в отличие от точных дубликатов, содержат незначительные отличия.

Иллюзия свежести – эффект кажущейся свежести, достигаемый поисковыми системами в интернете за счет более регулярного обхода тех документов, которые чаще находятся пользователями.

Инвертированный файл (inverted file, инверсный файл, инвертированный индекс, инвертированный список) – индекс поисковой системы, в котором перечислены слова коллекции документов, а для каждого слова перечислены все места, в которых оно встретилось.

индексирование. Индекс (index, указатель) – см.

Индекс цитирования (citation index) – число упоминаний (цитирований) научной статьи, в традиционной библиографической науке рассчитывается за промежуток времени, например, за год.

Индексирование (indexing, индексация) – процесс составления или приписывания указателя (индекса) – служебной структуры данных, необходимой для последующего поиска.

Предметом поиска выступает информационная потребность пользователя, неформально выраженная в поисковом запросе. Информационный поиск (Information Retrieval, IR) – поиск неструктурированной информации, единицей представления которой является документ произвольных форматов. Этими признаками информационный поиск отличается от «поиска данных», который оперирует набором формально заданных предикатов, имеет дело со структурированной информацией и чей результат всегда детерминирован. И критерий поиска, и его результаты недетермированы. Теория информационного поиска изучает все составляющие процесса поиска, а именно, предварительную обработку текста (индексирование), обработку и исполнение запроса, ранжирование, пользовательский интерфейс и обратную связь.

Клоакинг (cloaking) – техника поискового спама, состоящая в распознании авторами документов робота (индексирующего агента) поисковой системы и генерации для него специального содержания, принципиально отличающегося от содержания, выдаваемого пользователю.

различительная сила. Контрастность термина – см.

Основан на сингулярном разложении матрицы связи слов с документами. Латентно-семантическое индексирование – запатентованный алгоритм поиска по смыслу, идентичный факторному анализу.

Лемматизация (lemmatization, нормализация) – приведение формы слова к словарному виду, то есть лемме.

спам поисковых систем. Накрутка поисковых систем – см.

Непотизм – вид спама поисковых систем, установка авторами документов взаимных ссылок с единственной целью поднять свой ранг в результатах поиска.

Обратная встречаемость в документах (inverted document frequency, IDF, обратная частота в документах, обратная документная частота) – показатель поисковой ценности слова (его различительной силы); «обратная» говорят, потому что при вычислении этого показателя в знаменателе дроби обычно стоит число документов, содержащих данное слово.

Следует отличать от псевдообратной связи – техники модификации запроса, в которой несколько первых найденных документов автоматически считаются релевантными. Обратная связь – отклик пользователей на результат поиска, их суждения о релевантности найденных документов, зафиксированные поисковой системой и использующиеся, например, для итеративной модификации запроса.

полисемия. Омонимия – см.

Основа – часть слова, общая для набора его словообразовательных и словоизменительных (чаще) форм.

Поиск по смыслу – алгоритм информационного поиска, способный находить документы, не содержащие слов запроса.

Поиск похожих документов (similar document search) – задача информационного поиска, в которой в качестве запроса выступает сам документ и необходимо найти документы, максимально напоминающие данный.

Поисковая система (search engine, SE, информационно-поисковая система, ИПС, поисковая машина, машина поиска, «поисковик», «искалка») – программа, предназначенная для поиска информации, обычно текстовых документов.

Поисковое предписание (query, запрос) – обычно строчка текста.

Полисемия (polysemy, homography, многозначность, омография, омонимия) — наличие нескольких значений у одного и того же слова.

Полнота (recall, охват) – доля релевантного материала, заключенного в ответе поисковой системы, по отношению ко всему релевантному материалу в коллекции.

дубликаты. Почти-дубликаты (near-duplicates, приблизительные дубликаты) – см.

Прюнинг (pruning) – отсечение заведомо нерелевантных документов при поиске с целью ускорения выполнения запроса.

Прямой поиск – поиск непосредственно по тексту документов, без предварительной обработки (без индексирования).

обратная связь. Псевдо-обратная связь – см.

Слишком широкие термины в поиске приносят слишком много информации, при это существенная часть ее бесполезна. Различительная сила слова (term specificity, term discriminating power, контрастность, различительная сила) – степень ширины или узости слова. Слишком узкие термины помогают найти слишком мало документов, хотя и более точных.

д. Регулярное выражение (regualr expression, pattern, «шаблон», реже «трафарет», «маска») – способ записи поискового предписания, позволяющий определять пожелания к искомому слову, его возможные написания, ошибки и т. В широком смысле – язык, позволяющий задавать запросы неограниченной сложности.

Релевантность (relevance, relevancy) – соответствие документа запросу.

При поиске по методу сигнатур все сигнатуры всех блоков коллекции просматриваются последовательно в поисках совпадений с хеш-значениями слов запроса. Сигнатура (signature, подпись) – множество хеш-значений слов некоторого блока текста.

В отличие от словообразования, никогда не приводит к смене типа и порождает предсказуемое значение. Словоизменение (inflection) – образование формы определенного грамматического значения, обычно обязательного в данном грамматическом контексте, принадлежащей к фиксированному набору форм (парадигме), характерному для слов данного типа. Словоизменение имен называют склонением (declension), а глаголов – спряжением (conjugation).

Чаще приводит к смене типа и к образованию слов, имеющих идеосинкразическое значение. Словообразование (derivation) – образование слова или основы из другого слова или основы.

различительная сила. Смыслоразличительный – см.

Спам поисковых систем (spam, спамдексинг, накрутка поисковых систем) – попытка воздействовать на результат информационного поиска со стороны авторов документов.

PageRank. Статическая популярность – см.

Стемминг – процесс выделения основы слова.

Стоп-слова (stop-words) – те союзы, предлоги и другие частотные слова, которые данная поисковая система исключила из процесса индексирования и поиска для повышения своей производительности и/или точности поиска.

Суффиксом в этом индексе называют любую «подстроку», начинающуюся с некоторой позиции текста (текст рассматривается как одна непрерывная строка) и продолжающуюся до его конца. Суффиксные деревья, суффиксные массивы (suffix trees, suffix arrays, PAT-arrays) – индекс, основанный на представлении всех значимых суффиксов текста в структуре данных, известной как бор (trie). Этот индекс позволяет выполнять более сложные запросы, чем индекс, построенный на инвертированных файлах. В реальных приложениях длина суффиксов ограничена, а индексируются только значимые позиции – например, начала слов.

Токенизация (tokenization, lexical analysis, графематический анализ, лексический анализ) – выделение в тексте слов, чисел и иных токенов, в том числе, например, нахождение границ предложений.

Точность (precision) — доля релевантного материала в ответе поисковой системы.

Хеш-значение (hash-value) – значение хеш-функции (hash-function), преобразующей данные произвольной длины (обычно, строчку) в число фиксированного порядка.

Частота (слова) в документах (document frequency, встречаемость в документах, документная частота) – число документов в коллекции, содержащих данное слово.

Частота термина (term frequency, TF) – частота употреблений слова в документе.

Шингл – (shingle) – хеш-значение непрерывной последовательности слов текста фиксированной длины.

Соответствует вероятности попадания пользователя на страницу в модели случайного блуждания. PageRank – алгоритм расчета статической (глобальной) популярности страницы в интернете, назван в честь одного из авторов — Лоуренса Пейджа.

TF*IDF – численная мера соответствия слова и документа в векторной модели; тем больше, чем относительно чаще слово встретилось в документе и относительно реже – в коллекции.

Список литературы

Modern Information Retrieval
Baezo-Yates R. and Ribeiro-Neto B.
ACM Press Addison Wesley, 1999
The Connectivity Server: fast access to linkage information on the Web
K. Bharat, A. Broder, M. Henzinger, P. Kumara, and S. Venkatasubramanian
WWW7, 1998
http://www7.scu.edu.au/programme/fullpapers/1938/com1938.htm
The Anatomy of a Large-Scale Hypertextual Web Search Engine
S.Brin and L. Page
WWW7, 1998
http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm
Syntactic Clustering of the Web
Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse
WWW6, 1997
Indexing by Latent Semantic Analysis
S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman
JASIS, 1990
http://citeseer.nj.nec.com/deerwester90indexing.html
The approximation of one matrix by another of lower rank
C. Eckart, G. Young
Psychometrika, 1936
Description and performance analysis of signature file methods
C. Faloutsos, S. Christodoulakis
ACM TOIS 1987
FAST PMC — The Pattern Matching Chip
http://www.fast.no/product/fastpmc.html
www.idi.ntnu.no/grupper/KS-grp/microarray/slides/heggebo.pdf (ссылка больше не работает, на web.archive.org ее тоже нет – прим. ред.)
Information retrieval using a Singular Value Decomposition Model of Latent Semantic Structure
G.W. Furnas, S. Deerwester, S.T. Dumais, T.K. Landauer, R. A. Harshman, L.A. Streeter, and K.E. Lochbaum
ACM SIGIR, 1988
Glimpse, Webglimpse, Unix-based search software…
http://webglimpse.org
Examples of PAT applied to the Oxford English Dictionary
Gonnet G.
University of Waterloo, 1987
What we have learned, and not learned, from TREC
Donna Harman
http://irsg.eu.org/irsg2000online/papers/harman.htm
The Thesaurus Approach to Information Retrieval
T. Joyce and R.M. Needham
American Documentation, 1958
Authoritative Sources in a Hyperlinked Environment
Jon M. Kleinberg
JACM, 1998
http://citeseer.nj.nec.com/87928.html
An efficient method to detect duplicates of Web documents with the use of inverted index
S. Ilyinsky, M. Kuzmin, A. Melkov, I. Segalovich
WWW2002, 2002
Suffix Arrays: A New Method for On-line String Searches
U. Manber, G. Myers
1st ACM-SIAM Symposium on Discrete Algorithms, 1990
Finding similar files in a large file system
U. Manber
USENIX Conference, 1994
M.E. Maron and J.L. Kuhns
On relevance, probabilistic indexing and information retrieval
Journal of the ACM, 1960
Open Text Corporation
http://www.opentext.com
S.E. Robertson and Sparck Jones K.
Relevance Weighting of Search Terms
JASIS, 1976
Algorithms in C++, Robert Sedgewick
Addison-Wesley, 1992
A Statistical Interpretation of Term Specificity and Its Application in Retrieval
Karen Sparck Jones
Journal of Documentation, 1972
The Term Vector Database: fast access to indexing terms for Web pages
R. Stata, K. Bharat, F. Maghoul
WWW9, 2000
http://www9.org/w9cdrom/159/159.html
Natural Language Information Retrieval
Tomek Strzalkowski (ed.)
Kluwer Academic Publishers, 1999
Алгоритмы: построение и анализ, Т. Кормен, Ч. Лейзерсон, Р.Ривест
МЦНМО, 2000
https://www.ozon.ru/context/detail/id/33769775/
Симфония или словарь-указатель к священному писанию ветхого и нового завета. Составители М.А. Бондарев, М.С.Косьян, С.Ю.Косьян
Изд-во Московской патриархии, 1995

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть