Хабрахабр

Как пережить самый суровый ледниковый период в истории Земли?

В реальности же условия были гораздо более суровыми, а живые организмы всячески старались продлить свое существование. В мультфильме «Ледниковый период» мы наблюдаем за веселыми приключениями группы разношерстных животных во время глобального оледенения. Группа ученых из университета Макгилла (Монреаль, Канада) решили собрать воедино всю доступную информацию о криогении и выяснили, что эукариоты выжили за счет «кислородных оазисов». Если же вспомнить про криогений, самый суровый ледниковый период в истории нашей планеты, то возникает вполне очевидный вопрос — как живые организмы сумели пережить его? Об этом и не только мы узнаем из доклада исследовательской группы. Какие физико-химические процессы способствовали продолжению жизни на Земле и какую роль в этом сыграла талая ледниковая вода? Поехали.

Основа исследования

Чтобы определить криогений как период времени, придется разобрать геохронологическую матрешку: докембрий — протерозой — неопротерозой — криогений. Начался он примерно 720 миллионов лет назад, а закончился 635 миллионов лет назад, т.е. длился 85 миллионов лет.

5—2. Ледниковый период это собирательный термин, ибо в истории планеты их было несколько, произошедших в разные эры: кайнозой (20-30 млн лет назад); палеозой (380—240 млн лет назад); неопротерозой (900—590 млн лет назад); палеопротерозой (2. 2 млрд лет назад).

Таковым было гуронское оледенение, длившееся около 300 миллионов лет в период палеопротерозоя. Криогений, являющийся вторым периодом в неопротерозое (до этого был тоний, а после — эдиакарий), нельзя назвать самым продолжительным или самым холодным ледниковым периодом. Связано это с тем, что в этот период практически вся поверхность Земли была покрыта льдами и снегом, от чего и возникло название теории «Земля-снежок» («Snowball Earth»), объясняющее это явление. Однако криогений часто называют самым суровым оледенением.

Официально криогений был признан относительно недавно, в 1990 году он был ратифицирован международной комиссией по стратиграфии, которая занимается вопросами стратиграфии*, геологии и геохронологии в глобальных масштабах.

Стратиграфия* — раздел геологии, нацеленный на определение геологического возраста слоистых осадочных и вулканогенных горных пород.

С криогения до наших дней дошли ископаемые амебы (Arcellinida), которая, как предполагается, развилась именно в этот период. Также самые старые окаменелости губок относятся к периоду криогения. Несмотря на суровость климата в это время возникли и красные водоросли, зеленые водоросли, страменопилы, инфузории, динофлагелляты и раковинные амебы. А в конце криогения сформировался гетеротрофный планктон, питающийся одноклеточными водорослями и прокариотами.

Океаны, покрытые льдом, становились непригодными для жизни ввиду отсутствия кислорода. Стоит отметить, что не столько температура, сколько фактическое обледенение имело негативный эффект на жизнь в период криогения. В рассматриваемом нами сегодня исследовании ученые высказали предположение, что эукариотам помогли «кислородные оазисы», образованные в океанах посредством талой ледниковой воды. Однако, раз уж мы с вами здесь, значит что-то помогло эукариотам преодолеть все трудности ледникового периода и продолжить свое развитие и распространение по планете. Они провели анализ геологических данных и пришли к выводу, что эта теория абсолютно верна.

Ученые отмечают, что во многих сукцессиях* периода криогения, найденных по всей планете, были обнаружены отложения железа (IF от iron formation).

Закон сукцессии фауны гласит, что останки неандертальца не могут быть найдены в том же слое почвы, что и останки мегалозавра, так как эти два вида жили в разные геологические периоды, разделенные миллионами лет. Сукцессия* — хронологическая последовательность пластов (слоев или страт) почвы или осадочной породы.

Эти находки являются важными геохимическими данными касательно процессов протекающих в океанах в период оледенения. Дабы составить общую картину окислительно-восстановительных процессов в океанах во время экстремального оледенения, ученые собрали данные из девяти сукцессий, содержащих IF, из трех палеоконтинентов (древних материков), соответствующим таким современным локациям: Намибия, Австралия и США.


Изображение №1: локации, выбранные для исследования, а также их седиментология (изучение осадочные горных пород и процессов их образования).

Все 9 изученных IF-содержащих сукцессий продемонстрировали седиментологические доказательства осаждения в оледеневшей океанской среде, включая стратиграфическую связь с морскими отложениями, покрытыми льдом, и диамиктитами*, содержащими обломки с ледниковой штриховкой*.

Диамиктит* — осадочная горная порода, содержащая фрагменты пород разных размеров.

Ледниковая штриховка используется для определения движения ледников во время оледенения. Ледниковая штриховка* — совокупность параллельных царапин на поверхности породы, образованные при контакте с песком или гравием, включенным в нижнюю поверхность ледника.

Отложения, найденные в образцах, можно разделить на несколько групп в зависимости от механизма и зоны их формирования.

Ледниково-контактная зона представляет собой узкое пространство в пределах ~ 2 км от линии основания, где крупнозернистые, массивные диамиктиты многочисленны из-за процессов таяния базального льда* и выпадения осадков на подледном шельфе.

Базальный лед* — лед у основания ледника.

Ледниково-дистальная зона (более 10 км от линии основания) преимущественно характеризуется мелкозернистыми слоистыми отложениями, полученными в результате осаждения взвешенных отложений из потоков талой воды и отложений турбидита*.


Турбидит* — совокупность осадочных пород, образованная в глубоководных условиях за счет вещества, переносимого турбидными потоками.

Ледниково-проксимальная зона является промежуточной между контактной (где порода соприкасается со льдом) и дистальной. Тут также имеются диамиктиты, но в меньшем числе, чем в среде, контактирующей со льдом.

Зона осадконакопления изучаемых пластов варьируется в зависимости от региона и стратиграфии, потому каждому IF-содержащему образцу назначалась оледеневшая океанская среда (контактная среда, проксимально-ледовая или дистально-ледовая) на основе преобладающих внешних признаков той или иной литологической* группы.

Литология* — изучение состава, структуры, происхождения и изменений осадочных пород.

В образцах из Намибии преобладали массивные диамиктиты, содержащие обильные многогранные и штрихованные обломки. В некоторых местах были найдены доказательства подледниковой деформации в ледниково-контактной среде. IF-содержащие образцы (), смешанные с этими диамиктиты, действительно богаты на железо (Fe). Однако некоторые из них содержали меньше диамиктитов, но больше морских донных отложений, что указывает на диапазон условий осадконакопления от ледниково-контактной до ледниково-дистальной зоны.

Образцы из Южной Австралии (1D) характеризуются наличием диамиктитов с негабаритными обломками, алевролитами* и сланцами*, содержащими дропстоун*.

из алеврита) в процессе литификации (преобразование рыхлых осадков в твердые породы). Алевролит* — твердая осадочная горная порода, образованная из рыхлой мелкообломочной осадочной породы (т.е.

Сланец* — горная порода со слоистой структурой, состоящей из разных минералов.

Дропстоун* — обломок горной породы, выпавший из тающего плавучего льда (drop — ронять и stone — камень).

Образцы из Калифорнии (США) по большей степени состоят из турбидитовых песчаников и алевролитов, а также небольших диамиктитов. IF-содержащие породы в образцах из США достаточно тонкие (менее 5 м) и смешаны с алевролитами, песчаниками и отложениями массового потока, что указывает на ледниково-дистальное происхождение. Однако редкие IF-содержащие отложения, связанные с массивными диамиктитами, связывают с ледниково-дистальной зоной ().

Из вышеописанных наблюдений следует, что IF-содержащие отложения присутствуют во всех образцах в том или ином количестве.


Изображение №2: графики окислительно-восстановительных данных отложений железа (IF).

Для создания общей картины окислительно-восстановительных процессов в период оледенения были собраны элементные и изотопно-геохимические данные отложений железа посредством петрографического сканирования.

Осаждение этих отложений происходит ввиду окисления растворенного железа в морской воде. Отложения железа (IF) представляют собой мелкозернистый гематит (Fe2O3) с примесями в виде кремнеземистого цемента и детрита.

Геохимические данные IF демонстрируют четкую последовательность, которую можно объяснить относительной близостью к линии контакта льда и породы, а это может свидетельствовать о существовании некоего градиента окислительно-восстановительных реакций (ОВР).

Факт наличия железа в отложениях, несмотря на высокую скорость осаждения детрита в зонах контакта льда и породы, говорит о быстром процессе окисления железа в этих условиях. Так IF, контактирующие со льдом, являются наиболее обогащенными железом (2A).

Оксиды марганца быстро подвергаются восстановительному растворению в присутствии двухвалентного железа в морской воде. Как и железо, марганец (Mn) является ОВР-чувствительным металлом, который растворим в бескислородных условиях, образуя оксиды в присутствии O2. Следовательно, обогащение оксидом марганца может быть связано с потоком воды, насыщенной кислородом.

Церий истощается в морской воде в кислородных условиях по сравнению с ОВР-нечувствительными редкоземельными элементами из-за окислительной очистки, что приводит к цериевым аномалиям* (Cen/Cen* < 1) в кислородной морской воде. ОВР вариативность морской воды подтверждается еще и геохимией редкоземельных элементов, присутствующих в IF, таких как церий (Ce).

Аномалия церия* — это явление в геохимии, при котором концентрация церия (Ce) либо уменьшается, либо увенчивается в породе по сравнению с другими редкоземельными элементами.

Это наблюдение также подтверждает наличие обогащенной кислородом морской воды вблизи зон обледенения.

IF имеют очень широкий диапазон изотопов (2D) с чрезвычайно низкими значениями δ56Fe (вплоть до -1,8 ‰) и аномально высокими значениями (вплоть до 2,7 ‰). Изотопные составы Fe из изученных отложений железа дают дополнительное представление о динамике ОВР в морской среде периода криогения. 57 ‰; n = 14) были обнаружены исключительно в образцах из зоны контакта льда и породы. Внушительные отрицательные значения δ56Fe (среднее значение δ56Fe = −0. 1 ‰, n = 21 (ледниково-проксимальная зона); среднее значение δ56Fe = 1. Все другие образцы имеют положительное значение δ56Fe: среднее значение δ56Fe = 1. Это говорит о том, что значение увеличивается при отделении от зоны контакта льда и породы. 5; n = 46 (ледниково-дистальная зона).

Следовательно, источником О2 является сам ледниковый слой, который был образован в результате уплотнения снега. Суммируя вышеописанные результаты (окислительно-восстановительное обогащение металлов, аномалии Се и изотопы Fe), можно увидеть тенденцию к увеличению оксигенации (обогащения кислородом) морской воды в непосредственной близости от ледникового слоя. Вследствие этого процесса во льду были «захвачены» пузырьки воздуха.

В результате мы получаем талую ледниковую воду, богатую на кислород, которая снабжает им среду под ледником. Талая ледниковая вода может образовываться из верхнего слоя ледника, из основания ледника и из основания шельфового ледника посредством геотермальных потоков, давления и нагревания при трении.


Изображение №3: схема вымывания богатой на кислород базальной воды в бескислородную среду под ледником.

Следовательно, отложения железа являются прямым доказательством теории подледных «кислородных оазисов». Смешивание талой воды, богатой кислородом, с базальной водой полностью объясняет геохимические процессы, связанные с отложениями железа (IF), а также с их местом локализации.

Анализ ископаемых из криогения показали, что в этот период образовалось множество эукариотических организмов, в том числе archaeplastidans, opisthokonts и amoebozoans. И ведь действительно, несмотря на крайне суровые климатические условия, жизнь на планете не только не прекратила свое существование, но и продолжала развиваться.

Кислородные оазисы могли простираться на многие километры, о чем свидетельствуют современные наблюдения за оледеневшими окраинами Антарктиды. Многие из этих эукариотов являются аэробами, потому оксигенация подледной среды посредством талой воды была крайне важной основой поддержания жизни. Из этого следует, что подобная среда обитания могла быть не только большой, но и более стабильной, нежели ледниковые трещины, о которых говорится в других теориях оксигенации.

Принимая во внимание то, что доступность О2 является жизненно важной для развития сложной многоклеточной жизни, можно предположить, что кислородные оазисы были важными рефугиумами* для ранних животных.

Считается, что в рефугиуме вид может сохраниться и даже распространиться из него. Рефугиум* — область среды обитания, где биологический вид или группа видов пережили или переживают неблагоприятный для них период геологического времени.

Современные исследования молекулярных часов* показывают, что многоклеточность животных развивалась еще до криогения.

Молекулярные часы* — метод датирования филогенетических (эволюционная связь между видами) событий, основанный на гипотезе, согласно которой эволюционно значимые замены мономеров в биомолекулах происходят с практически постоянной скоростью.

Самые ранние животные были, вероятно, бентическими (донными), учитывая, что губки считаются базальной кладой животных. На основе этого ученые предполагают, что оксигенация подледной океанической среды являлась важным процессом в развитии и распространении бентической макрофауны. Кроме того, поступление талой пресной воды могло также способствовать снижению степени солености воды, что важно для ранних губок. Ареал обитания современных губок достаточно широк и разнообразен, однако биологические характеристики их предков пока остаются загадкой. Потому сложно сказать, могли ли они обитать в сверхсоленой среде, которая образовывалась ввиду обледенения поверхности океана.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

Криогений был далеко не самым легким периодом для биологических видов на нашей планете. Тем не менее, жизнь нашла выход из ситуации — талая пресная вода, насыщенная кислородом, смешивалась с океанической, что порождало приемлемую для выживания и даже развития среду обитания.

Раскрыть тайну выживания эукариотов в самый суровый ледниковый период помогли отложения железа, которые, словно фотографии далекого прошлого, содержали ценную геохимическую информацию о процессах, протекавших миллионы лет тому назад.

По словам самих исследователей их труд позволил не только разгадать загадку выживания организмов в криогении, но и объяснить повторное нахождение в геологических образцах отложений железа, которые до этого отсутствовали порядка 1 миллиарда лет.

Ученые намерены продолжить свои исследования, дабы выяснить, чем же питались эукариоты во время криогении. Кислород, естественно, очень важен для выживания, но помимо этого необходима еще и пища.

🙂 Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята.

Немного рекламы 🙂

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2. 2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. Dell R420 — 2x E5-2430 2. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Показать больше

Похожие публикации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»