Хабрахабр

Как наконец-то начать писать тесты и не пожалеть об этом

Приходя на новый проект, я регулярно сталкиваюсь с одной из следующих ситуаций:

  1. Тестов нет совсем.
  2. Тестов мало, их редко пишут и не запускают на постоянной основе.
  3. Тесты присутствуют и включены в CI (Continuous Integration), но приносят больше вреда, чем пользы.

К сожалению, именно к последнему сценарию часто приводят серьезные попытки начать внедрять тестирование при отсутствии соответствующих навыков.

Идея использования тестов не нова. Что можно сделать, чтобы изменить сложившуюся ситуацию? Такие статьи не отвечают на вопросы о том, какие тесты нужно писать, на что стоит обращать внимание и как со всем этим жить. При этом большинство туториалов напоминают знаменитую картинку про то, как нарисовать сову: подключаем JUnit, пишем первый тест, используем первый мок — и вперед! Я постарался кратко обобщить свой опыт внедрения тестов в разных проектах, чтобы облегчить этот путь для всех желающих.
Отсюда и родилась идея данной статьи.

Совсем вводных статей по данной теме более чем достаточно, поэтому не будем повторяться и попытаемся зайти с другой стороны. В первой части развенчаем миф о том, что тестирование несет исключительно дополнительные затраты. Будет показано, как создание качественных тестов может в свою очередь ускорить процесс разработки. Затем на примере небольшого проекта будут рассмотрены базовые принципы и правила, которых стоит придерживаться, чтобы эту выгоду реализовать. Наконец, в заключительном разделе будут даны конкретные рекомендации по внедрению: как избежать типичных проблем, когда тесты начинают, наоборот, существенно тормозить разработку.

При этом значительная часть статьи посвящена общим вопросам тестирования и советы в ней применимы к гораздо более широкому кругу задач. Так как моя основная специализация — Java backend, то в примерах будет использован следующий стек технологий: Java, JUnit, H2, Mockito, Spring, Hibernate.

Тесты вызывают сильнейшую зависимость: однажды научившись ими пользоваться, вы уже не сможете без них жить. Однако будьте осторожны!

Содержание

Тесты vs скорость разработки

Главные вопросы, которые возникают при обсуждении внедрения тестирования: сколько времени займет написание тестов и какие преимущества это будет иметь? Тестирование, как и любая другая технология, потребует серьезных усилий на освоение и внедрение, поэтому на первых порах никакой значимой выгоды ожидать не стоит. Что касается временных затрат, то они сильно зависят от конкретной команды. Однако меньше чем на 20–30 % дополнительных затрат на кодирование рассчитывать точно не стоит. Меньшего просто не хватит для достижения хоть какого-то результата. Ожидание мгновенной отдачи часто является главной причиной сворачивания этой деятельности еще до того, как тесты станут приносить пользу.

Давайте отбросим лирику о трудностях внедрения и посмотрим, какие конкретные возможности по экономии времени открывает тестирование. Но о какой же тогда эффективности идет речь?

Запуск кода в произвольном месте

При отсутствии тестов в проекте единственным способом запуска является поднятие приложения целиком. Хорошо, если на это будет уходить секунд 15–20, но далеко не редки случаи больших проектов, в которых полноценный запуск может занимать от нескольких минут. Что же это означает для разработчиков? Существенную часть их рабочего времени будут составлять эти короткие сессии ожидания, на протяжении которых нельзя продолжать работать над текущей задачей, но при этом времени на переключение на что-то другое слишком мало. Многие хотя бы раз сталкивались с такими проектами, где написанный за час код требует многочасовой отладки из-за долгих перезапусков между исправлениями. В тестах же можно ограничиться запуском маленьких частей приложения, что позволит значительно сократить время ожидания и повысит продуктивность работы над кодом.

Зачастую проверка даже основных позитивных сценариев использования через интерфейс приложения требует серьезных усилий и времени. Кроме того, возможность запуска кода в произвольном месте ведет к более тщательной отладке. Наличие же тестов позволяет проводить детальную проверку конкретного функционала гораздо проще и быстрее.

В зависимости от сложности проверяемой логики, можно ограничиться одним методом, классом, группой классов, реализующих некоторую функциональность, сервисом и так далее, вплоть до автоматизации тестирования приложения целиком. Еще один плюс — возможность регулирования размера тестируемого юнита. Такая гибкость позволяет разгрузить высокоуровневые тесты от многих деталей за счет того, что они будут проверены на более низких уровнях.

Повторный запуск тестов

Этот плюс часто приводят как суть автоматизации тестирования, однако давайте рассмотрим его под менее привычным углом зрения. Какие новые возможности для разработчиков он открывает?

К сожалению, важность этого сильно недооценена. Во-первых, каждый новый пришедший на проект разработчик сможет легко запустить имеющиеся тесты, чтобы разобраться в логике приложения на примерах. А так как команды состоят из нескольких человек, то появление нового участника каждые 2–3 месяца — типичная ситуация для относительно крупных проектов. В современных условиях одни и те же люди редко работают над проектом дольше 1–2 лет. Возможность легко запустить любую часть приложения и посмотреть на поведение системы в разы упрощает погружение новых программистов в проект. Особо тяжелые проекты переживают смены целых поколений разработчиков! Кроме того, более детальное изучение логики кода уменьшает количество допущенных ошибок на выходе и время на их отладку в будущем.

Этот термин, к сожалению, гораздо менее популярен, чем CI. Во-вторых, возможность легко убедиться в том, что приложение работает корректно, открывает дорогу для непрерывного рефакторинга (Continuous Refactoring). Именно регулярное следование небезызвестному правилу бойскаута «оставь место стоянки чище, чем оно было до твоего прихода», позволяет избегать деградации кодовой базы и гарантирует проекту долгую и счастливую жизнь. Он означает, что рефакторинг можно и нужно делать при каждой доработке кода.

Отладка

Отладка уже была упомянута в предыдущих пунктах, но этот момент настолько важен, что заслуживает более внимательного рассмотрения. К сожалению, не существует достоверного способа измерить соотношение между временем, потраченным на написание кода и на его отладку, так как эти процессы практически неотделимы друг от друга. Тем не менее наличие качественных тестов в проекте существенно сокращает время отладки, вплоть до почти полного отсутствия необходимости запускать дебаггер.

Эффективность

Все перечисленное может дать существенную экономию времени на первичную отладку кода. При правильном подходе только это уже окупит все дополнительные затраты на разработку. Остальные бонусы тестирования — повышение качества кодовой базы (плохо спроектированный код тяжело тестировать), уменьшение количества дефектов, возможность убедиться в корректности кода в любой момент и т. д. — достанутся практически бесплатно.

От теории к практике

На словах это все выглядит неплохо, но давайте перейдем к делу. Как уже было сказано ранее, материалов о том, как произвести первичную настройку тестовой среды, более чем достаточно. Потому сразу перейдем к готовому проекту. Исходники тут.

Задача

В качестве шаблонной задачки рассмотрим небольшой фрагмент бэкенда интернет-магазина. Напишем типовой API для работы с продуктами: создание, получение, редактирование. А также пару методов для работы с клиентами: смена «любимого продукта» и расчет бонусных баллов по заказу.

Доменная модель

Чтобы не перегружать пример, ограничимся минимальным набором полей и классов.

У клиента (Customer) есть логин, ссылка на любимый продукт и флаг, указывающий на то, является ли он премиальным клиентом.

У продукта (Product) — название, цена, скидка и флаг, указывающий на то, рекламируется ли он в данный момент.

Структура проекта

Структура основного кода проекта выглядит следующим образом.

Классы разбиты по слоям:

  • Model — доменная модель проекта;
  • Jpa — репозитории для работы с БД на основе Spring Data;
  • Service — бизнес-логика приложения;
  • Controller — контроллеры, реализующие API.

Структура юнит-тестов.

Дополнительно создан пакет с билдерами для подготовки тестовых данных, но об этом ниже. Классы тестов лежат в тех же пакетах, что и оригинальный код.

Они зачастую имеют разные зависимости, и для комфортной разработки должна быть возможность запустить либо одни, либо другие. Удобно разделять юнит-тесты и интеграционные тесты. Выбор конкретного способа — исключительно вопрос вкуса. Этого можно добиться разными способами: конвенции именования, модули, пакеты, sourceSets. В данном проекте интеграционные тесты лежат в отдельном sourceSet — integrationTest.

Дополнительно есть базовые классы, которые помогают избавиться от дублирования конфигурации и при необходимости содержат полезные универсальные методы. Подобно юнит-тестам, классы с интеграционными тестами лежат в тех же пакетах, что и оригинальный код.

Интеграционные тесты

Есть разные подходы к тому, с каких тестов стоит начинать. В случае, если проверяемая логика не очень сложна, можно сразу переходить к интеграционным (их еще иногда называют приемочными — acceptance). В отличие от юнит-тестов они позволяют убедиться, что приложение в целом работает корректно.

Архитектура

Spring Boot предоставляет полную свободу выбора: можно поднимать часть контекста, весь контекст и даже полноценный сервер, доступный из тестов. Для начала надо определиться, на каком конкретно уровне будут выполняться интеграционные проверки. Часто приходится писать разные тесты на разных уровнях. При увеличении размера приложения этот вопрос становится все более сложным.

В относительно небольших приложениях вполне приемлемо поднимать весь контекст целиком, так как по умолчанию он переиспользуется между тестами и инициализируется только один раз. Хорошей точкой старта будут тесты контроллеров без запуска сервера. Рассмотрим основные методы класса ProductController:

@PostMapping("new")
public Product createProduct(@RequestBody Product product) { return productService.createProduct(product);
} @GetMapping("")
public Product getProduct(@PathVariable("productId") long productId) { return productService.getProduct(productId);
} @PostMapping("{productId}/edit")
public void updateProduct(@PathVariable("productId") long productId, @RequestBody Product product) { productService.updateProduct(productId, product);
}

Вопрос обработки ошибок оставим в стороне. Предположим, что она реализована снаружи на основе анализа выбрасываемых исключений. Код методов очень простой, их реализация в сервисе ProductService не сильно сложнее:

@Transactional(readOnly = true)
public Product getProduct(Long productId) { return productRepository.findById(productId) .orElseThrow(() -> new DataNotFoundException("Product", productId));
} @Transactional
public Product createProduct(Product product) { return productRepository.save(new Product(product));
} @Transactional
public Product updateProduct(Long productId, Product product) { Product dbProduct = productRepository.findById(productId) .orElseThrow(() -> new DataNotFoundException("Product", productId)); dbProduct.setPrice(product.getPrice()); dbProduct.setDiscount(product.getDiscount()); dbProduct.setName(product.getName()); dbProduct.setIsAdvertised(product.isAdvertised()); return productRepository.save(dbProduct);
}

Репозиторий ProductRepository вообще не содержит собственных методов:

public interface ProductRepository extends JpaRepository<Product, Long> {
}

Все намекает на то, что юнит-тесты этим классам не нужны просто потому, что всю цепочку можно легко и эффективно проверить несколькими интеграционными тестами. Дублирование одних и тех же проверок в разных тестах приводит к усложнению отладки. В случае появления ошибки в коде теперь упадет не один тест, а сразу 10–15. Это в свою очередь потребует дальнейшего анализа. Если же дублирования нет, то единственный упавший тест, скорее всего, сразу укажет на ошибку.

Конфигурация

Для удобства выделим базовый класс BaseControllerIT, который содержит конфигурацию Spring и пару полей:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.NONE)
@Transactional
public abstract class BaseControllerIT { @Autowired protected ProductRepository productRepository; @Autowired protected CustomerRepository customerRepository;
}

Репозитории вынесены в базовый класс, чтобы не захламлять классы тестов. Их роль исключительно вспомогательная: подготовка данных и проверка состояния базы после работы контроллера. При увеличении размера приложения это может перестать быть удобным, но для начала вполне подойдет.

Основная конфигурация Spring задается следующими строчками:

WebEnvironment. @SpringBootTest — используется для того, чтобы задать контекст приложения. NONE означает, что веб-контекст поднимать не надо.

@Transactional — оборачивает все тесты класса в транзакцию с автоматическим откатом для сохранения состояния базы.

Структура теста

Перейдем к минималистичному набору тестов для класса ProductControllerProductControllerIT.

@Test
public void createProduct_productSaved() { Product product =
product("productName").price("1.01").discount("0.1").advertised(true).build(); Product createdProduct = productController.createProduct(product); Product dbProduct = productRepository.getOne(createdProduct.getId()); assertEquals("productName", dbProduct.getName()); assertEquals(number("1.01"), dbProduct.getPrice()); assertEquals(number("0.1"), dbProduct.getDiscount()); assertEquals(true, dbProduct.isAdvertised());
}

Код теста должен быть предельно прост и понятен с первого взгляда. Если это не так, то большая часть плюсов тестов, описанных в первом разделе статьи, теряется. Хорошей практикой является разделение тела теста на три визуально отделяемые друг от друга части: подготовка данных, вызов тестируемого метода, валидация результатов. При этом очень желательно, чтобы код теста помещался на экране целиком.

Альтернативно можно было бы явно сравнивать объекты, например так: Лично мне кажется более наглядным, когда тестовые значения из секции подготовки данных используются потом и в проверках.

assertEquals(product, dbProduct);

В другом тесте на обновление информации о продукте (updateProduct) видно, что создание данных стало немного сложнее и для сохранения визуальной целостности трех частей теста они отделены двумя переводами строк подряд:

@Test
public void updateProduct_productUpdated() { Product product = product("productName").build(); productRepository.save(product); Product updatedProduct = product("updatedName").price("1.1").discount("0.5").advertised(true).build(); updatedProduct.setId(product.getId()); productController.updateProduct(product.getId(), updatedProduct); Product dbProduct = productRepository.getOne(product.getId()); assertEquals("updatedName", dbProduct.getName()); assertEquals(number("1.1"), dbProduct.getPrice()); assertEquals(number("0.5"), dbProduct.getDiscount()); assertEquals(true, dbProduct.isAdvertised());
}

Каждую из трех частей теста можно упростить. Для подготовки данных отлично подходят тестовые билдеры, которые содержат в себе логику создания объектов, удобную для использования из тестов. Слишком сложные вызовы методов можно выносить во вспомогательные методы внутри тестовых классов, скрывая часть нерелевантных для данного класса параметров. Для упрощения сложных проверок можно также писать вспомогательные функции либо реализовывать собственные матчеры. Главное при всех этих упрощениях — не потерять наглядности теста: все должно быть понятно с первого взгляда на основной метод, без необходимости перехода вглубь.

Тестовые билдеры

Инкапсуляция логики создания объектов упрощает сопровождение тестов. Тестовые билдеры заслуживают отдельного внимания. Для этого нужно не создавать его напрямую, а использовать статический метод, который заполнит недостающие поля значениями по умолчанию. В частности, заполнение не релевантных данному тесту полей модели можно скрыть внутри билдера. В ProductBuilder он выглядит так: Например, в случае появления новых обязательных полей в модели их можно будет легко добавить в этот метод.

public static ProductBuilder product(String name) { return new ProductBuilder() .name(name) .advertised(false) .price("0.00");
}

Название теста

Для наглядности лучше всего дать ответ на этот вопрос в его названии. Крайне важно понимать, что конкретно проверяется в данном тесте. На примере тестов для метода getProduct рассмотрим используемую конвенцию именования:

@Test
public void getProduct_oneProductInDb_productReturned() { Product product = product("productName").build(); productRepository.save(product); Product result = productController.getProduct(product.getId()); assertEquals("productName", result.getName());
} @Test
public void getProduct_twoProductsInDb_correctProductReturned() { Product product1 = product("product1").build(); Product product2 = product("product2").build(); productRepository.save(product1); productRepository.save(product2); Product result = productController.getProduct(product1.getId()); assertEquals("product1", result.getName());
}

В общем случае заголовок тестового метода состоит из трех частей, разделенных подчеркиванием: имя тестируемого метода, сценарий, ожидаемый результат. Однако здравый смысл никто не отменял, и вполне оправданным может быть опускание каких-то частей названия, если они не нужны в данном контексте (например, сценарий в единственном тесте на создание продукта). Цель такого именования — добиться того, чтобы суть каждого теста была понятна без изучения кода. Это делает окошко результатов прохождения тестов максимально наглядным, а именно с него обычно и начинается работа с тестами.

Выводы

На первое время минималистичного набора из четырех тестов вполне достаточно для проверки методов класса ProductController. Вот и все. При этом минимальное количество тестов значительно сокращает время и силы на их поддержку. В случае выявления багов всегда можно будет добавить недостающие тесты. В то же время такого тестового набора вполне достаточно для получения бонусов, описанных в первой части статьи. В свою очередь это является критичным в процессе внедрения тестирования, так как первые тесты обычно получаются не самого лучшего качества и создают много неожиданных проблем.

При необходимости можно написать отдельные тесты для веб-слоя с заглушкой вместо базы (@WebMvcTest, MockMvc, @MockBean) или использовать полноценный сервер. Стоит обратить внимание, что такие тесты не проверяют веб-слой приложения, однако зачастую этого и не требуется. Пример такого интеграционного теста можно посмотреть в классе CustomerControllerServerIT. Последнее может затруднить отладку и усложнить работу с транзакциями, поскольку транзакцию сервера тест уже контролировать не сможет.

Юнит-тесты

Юнит-тесты имеют ряд преимуществ перед интеграционными:

  • Запуск занимает миллисекунды;
  • Небольшой размер тестируемого юнита;
  • Легко реализовать проверку большого количества вариантов, так как при вызове метода напрямую подготовка данных значительно упрощается.

Несмотря на это, юнит-тесты по своей природе не могут гарантировать работоспособность приложения в целом и не позволяют избежать написания интеграционных. Если логика тестируемого юнита проста, дублирование интеграционных проверок юнит-тестами не принесет никакой выгоды, а лишь добавит больше кода для поддержки.

Его отличительная особенность — большое количество ветвлений бизнес-логики. Единственный класс в данном примере, который заслуживает юнит-тестирования, — это BonusPointCalculator. Например, предполагается, что покупатель получает бонусами 10 % от стоимости продукта, помноженные на не более чем 2 мультипликатора из следующего списка:

  • Продукт стоит больше 10 000 (× 4);
  • Продукт участвует в рекламной кампании (× 3);
  • Продукт является «любимым» продуктом клиента (× 5);
  • Клиент имеет премиальный статус (× 2);
  • В случае, если клиент имеет премиальный статус и покупает «любимый» продукт, вместо двух обозначенных мультипликаторов используется один (× 8).

В реальной жизни, безусловно, стоило бы спроектировать гибкий универсальный механизм расчета этих бонусов, но для упрощения примера ограничимся фиксированной реализацией. Код расчета мультипликаторов выглядит так:

private List<BigDecimal> calculateMultipliers(Customer customer, Product product) { List<BigDecimal> multipliers = new ArrayList<>(); if (customer.getFavProduct() != null && customer.getFavProduct().equals(product)) { if (customer.isPremium()) { multipliers.add(PREMIUM_FAVORITE_MULTIPLIER); } else { multipliers.add(FAVORITE_MULTIPLIER); } } else if (customer.isPremium()) { multipliers.add(PREMIUM_MULTIPLIER); } if (product.isAdvertised()) { multipliers.add(ADVERTISED_MULTIPLIER); } if (product.getPrice().compareTo(EXPENSIVE_THRESHOLD) >= 0) { multipliers.add(EXPENSIVE_MULTIPLIER); } return multipliers;
}

Большое количество вариантов приводит к тому, что двумя-тремя интеграционными тестами здесь уже не ограничишься. Минималистичный набор юнит-тестов отлично подойдет для отладки такого функционала.

Вот некоторые из них: Соответствующий набор тестов можно посмотреть в классе BonusPointCalculatorTest.

@Test
public void calculate_oneProduct() { Product product = product("product").price("1.00").build(); Customer customer = customer("customer").build(); Map<Product, Long> quantities = mapOf(product, 1L); BigDecimal bonus = bonusPointCalculator.calculate(customer, list(product), quantities::get); BigDecimal expectedBonus = bonusPoints("0.10").build(); assertEquals(expectedBonus, bonus);
} @Test
public void calculate_favProduct() { Product product = product("product").price("1.00").build(); Customer customer = customer("customer").favProduct(product).build(); Map<Product, Long> quantities = mapOf(product, 1L); BigDecimal bonus = bonusPointCalculator.calculate(customer, list(product), quantities::get); BigDecimal expectedBonus = bonusPoints("0.10").addMultiplier(FAVORITE_MULTIPLIER).build(); assertEquals(expectedBonus, bonus);
}

Стоит обратить внимание, что в тестах идет обращение именно к публичному API класса — методу calculate. Тестирование контракта класса, а не его реализации позволяет избегать поломок тестов из-за нефункциональных изменений и рефакторинга.

В данном случае достаточно одного более-менее репрезентативного теста, например такого: Наконец, когда мы проверили внутреннюю логику юнит-тестами, в интеграционный все эти детали выносить уже не нужно.

@Test
public void calculateBonusPoints_twoProductTypes_correctValueCalculated() { Product product1 = product("product1").price("1.01").build(); Product product2 = product("product2").price("10.00").build(); productRepository.save(product1); productRepository.save(product2); Customer customer = customer("customer").build(); customerRepository.save(customer); Map<Long, Long> quantities = mapOf(product1.getId(), 1L, product2.getId(), 2L); BigDecimal bonus = customerController.calculateBonusPoints( new CalculateBonusPointsRequest("customer", quantities) ); BigDecimal bonusPointsProduct1 = bonusPoints("0.10").build(); BigDecimal bonusPointsProduct2 = bonusPoints("1.00").quantity(2).build(); BigDecimal expectedBonus = bonusPointsProduct1.add(bonusPointsProduct2); assertEquals(expectedBonus, bonus);
}

Как и в случае с интеграционными тестами, использованный набор юнит-тестов очень небольшой и не гарантирует полной корректности приложения. Тем не менее его наличие значительно повышает уверенность в коде, облегчает отладку и дает прочие бонусы, перечисленные в первой части статьи.

Рекомендации по внедрению

Надеюсь, предыдущих разделов было достаточно, чтобы убедить хотя бы одного разработчика попробовать начать использовать тесты в своем проекте. В этой главе будут кратко перечислены основные рекомендации, которые помогут избежать серьезных проблем и приведут к снижению первичных издержек на внедрение.

Поэтому по возможности лучше начинать с небольшого нового приложения. Постарайтесь начать внедрение тестов на новом приложении. Написать первые тесты в большом legacy-проекте будет намного сложнее и потребует большей квалификации, чем в свежесозданном. Главное, чтобы задача была более-менее реалистичной — выдуманные примеры не дадут полноценного опыта. Если же новых полноценных приложений не ожидается, можно попробовать разработать какую-нибудь полезную утилиту для внутреннего использования.

Потому крайне важно настроить хотя бы минимальный CI-конвейер с автоматическим запуском тестов при каждом обновлении кода в репозитории. Настройте регулярный запуск тестов. Если тесты не запускаются на регулярной основе, то они не только перестают выполнять свою основную функцию — проверку корректности кода, — но и быстро устаревают.

Здесь может помочь соответствующая литература (ссылки в конце статьи) или грамотный ментор, но необходимости самостоятельного набивания шишек это не отменяет. Не гонитесь за покрытием. Как и в случае любой другой технологии, первое время тесты будут получаться не самого хорошего качества. Поэтому для минимизации ущерба первое время лучше не гнаться за количеством и красивыми цифрами вроде стопроцентного покрытия. Тесты в этом плане похожи на остальной код: понять, как они повлияют на проект, получится только пожив с ними некоторое время. Вместо этого стоит ограничиться основными позитивными сценариями по собственному функционалу приложения.

В свою очередь это станет серьезным тормозящим фактором при последующем рефакторинге и доработках приложения. Не увлекайтесь юнит-тестами. В продолжение темы «количество vs качество» нужно отметить, что честными юнит-тестами первое время увлекаться не стоит, потому что это легко может привести к чрезмерной спецификации приложения. Юнит-тесты следует использовать только при наличии сложной логики в конкретном классе или группе классов, которую неудобно проверять на уровне интеграционных.

С одной стороны, полная изоляция юнита позволяет сосредоточиться на тестируемой логике и не думать об остальных частях системы. Не увлекайтесь заглушками классов и методов приложения. Заглушки (stub, mock) — еще один инструмент, который требует взвешенного подхода и соблюдения баланса. С другой стороны, это потребует дополнительного времени на разработку и, как и при использовании юнит-тестов, может привести к чрезмерной спецификации поведения.

Безусловно, возможность запустить тест в реальном окружении полезна для отладки и разработки. Отвяжите интеграционные тесты от внешних систем. Очень частая ошибка в интеграционных тестах — использование реальной базы данных, очередей сообщений и прочих внешних по отношению к приложению систем. Однако повсеместное их использование приводит к целому ряду проблем: Такие тесты в небольших количествах могут иметь смысл, особенно для запуска в интерактивном режиме.

  1. Для запусков тестов нужно будет настраивать внешнее окружение. Например, устанавливать базу данных на каждую машину, где будет собираться приложение. Это усложнит вход новых разработчиков в проект и настройку CI.
  2. Состояние внешних систем может отличаться на разных машинах перед запуском тестов. Например, в базе могут уже находиться нужные приложению таблицы с данными, которые не ожидаются в тесте. Это приведет к непредсказуемым сбоям в работе тестов, и их устранение потребует значительного количества времени.
  3. В случае, если ведется параллельная работа над несколькими проектами, возможно неочевидное влияние одних проектов на другие. Например, специфические настройки базы, выполненные для одного из проектов, смогут помочь корректно работать функционалу другого проекта, который, однако, сломается при запуске на чистой базе на другой машине.
  4. Тесты выполняются долго: полный прогон может достигать десятков минут. Это приводит к тому, что разработчики перестают запускать тесты локально и смотрят на их результаты только после отправки изменений в удаленный репозиторий. Такое поведение сводит на нет большинство плюсов тестов, о которых говорилось в первой части статьи.

Очищайте контекст между интеграционными тестами. Часто для ускорения работы интеграционных тестов приходится переиспользовать между ними один и тот же контекст. Такую рекомендацию дает даже официальная документация Spring. При этом нужно избегать влияния тестов друг на друга. Так как запускаются они в произвольном порядке, то наличие таких связей может привести к случайным невоспроизводимым ошибкам. Чтобы этого не произошло, тесты не должны оставлять после себя никаких изменений в контексте. Например при использовании базы данных, для изоляции обычно бывает достаточно откатывать все совершенные в тесте транзакции. В случае, если изменений в контексте избежать не удается, можно настроить его пересоздание с помощью аннотации @DirtiesContext.

Например, при использовании базы данных обычно бывает достаточно просто откатывать все совершенные в тесте транзакции. Чтобы этого не произошло, тесты не должны оставлять после себя никаких изменений в контексте.

Чтобы такого не происходило, нужно постоянно следить за этим показателем и принимать меры в случае необходимости. Следите за тем, чтобы тесты выполнялись за разумное время. Даже если тесты не зависят от реальных внешних систем, время их выполнения может легко выйти из-под контроля. Самое меньшее, что можно сделать, — выделить медленные тесты в отдельную группу, чтобы они не мешали работе над не связанными с ними задачами.

Время, потраченное на изучение теста, могло бы быть потрачено на изучение кода. Старайтесь делать тесты максимально понятными и читаемыми. Как уже было показано в примере, тесты надо писать так, чтобы в них не нужно было разбираться.

В целом, умение писать хорошие тесты не связано с тем, в какой момент они написаны. Не зацикливайтесь на TDD (Test-Driven Development). TDD является довольно популярной практикой, однако я не считаю ее обязательной, особенно на первых этапах внедрения. Что действительно важно, так это делать первичную отладку кода уже на тестах, поскольку это один из основных способов экономии времени.

Первые тесты написаны, что дальше?

Далее надо внимательно наблюдать за жизнью тестов в проекте и периодически задавать себе вопросы, подобные следующим:

  1. Какие тесты мешают рефакторингу и доработкам (требуют постоянных исправлений)? Такие тесты требуется переписать либо полностью удалить из проекта и заменить более высокоуровневыми.
  2. Какие тесты часто и непредсказуемо ломаются при многократном либо параллельном запуске, при запуске в разных средах (компьютер коллеги, сервер CI)? Они также требуют переработки.
  3. Какие ошибки проходят мимо тестов? На каждый такой баг желательно добавлять новый тест и в будущем иметь их в виду при написании тестов для аналогичного функционала.
  4. Какие тесты работают слишком долго? Нужно постараться их переписать. Если это невозможно, то отделить их от более быстрых, чтобы сохранить возможность оперативного локального прогона.

Дополнительно стоит обратить внимание на те преимущества тестов, которые были описаны в начале статьи. Если вы их не получаете, значит, что-то пошло не так. Регулярная ретроспектива — наиболее дешевый путь к стабильному росту качества и эффективности используемых тестов.

Заключение

Поначалу лучше не гнаться за количеством тестов, а сосредоточиться на их качестве. Огромное число неуместных юнит-тестов может легко стать якорем, тянущим проект на дно. Кроме того, наличие юнит-тестов не освобождает от необходимости написания интеграционных. Поэтому наиболее эффективная стратегия на первое время — начинать с покрытия основных позитивных сценариев интеграционными тестами и, в случае если этого оказывается недостаточно, добавлять локальные проверки юнит-тестами. Со временем будет накапливаться обратная связь, которая поможет исправить допущенные ошибки и получить более четкое представление об эффективном использовании разных методик автоматического тестирования.

Надеюсь, среди прочитавших найдутся те, чьи тонкие струны души окажутся задеты моим графоманством, и в мире появится еще несколько проектов с хорошими и эффективными тестами!

Исходники проекта на GitHub

Полезная литература

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть