Хабрахабр

[Из песочницы] Логична ли математика или почему парадоксальны аксиоматические теории

image

Сегодня мы поговорим об основах. Теоретические основы задают пределы возможного и показывают пути достижения целей, а потому глубина понимания в таких вопросах никогда не будет лишней.

По ходу освещения темы мы постепенно углубимся в недра подхода, называемого логикой, а затем обратим внимание на связи логики и математики, после чего наши читатели смогут легко разобраться не только в причинах полезности логики при выводе аксиоматических теорий, но и зачем вообще аксиоматические теории нужны, а так же поймут как не надо подходить к строительству непротиворечивых теорий.
Начнём со списка занимательных задачек. Все основы мы осветить не сможем, поэтому пока направим свой просветительский луч на занимательные задачки, называемые парадоксами. То есть говоря другими словами — задачки не предполагают наличия решения, но скорее занимательным образом показывают нетривиальность логических рассуждений. Эти задачки называют парадоксами, поскольку как бы мы не отвечали на вопрос, который ставится в задаче, автор парадокса всегда легко докажет, что мы неправы.

Парадокс брадобрея

Вопрос — кто бреет брадобрея? В некой деревне некий брадобрей заявил, что он бреет в своей деревне всех, кто не бреется сам.

Если вы ответили, что брадобрея бреет сам брадобрей, то сторонники парадоксов вам быстро объяснят, что брадобрей по условиям задачи бреет тех, кто не бреется сам, а значит он не может брить себя, иначе получилось бы, что он бреется сам и тем самым бреет того, кто бреется сам.

Значит если его бреет кто-то другой, тогда он не бреется сам и по условию должен быть брит брадобреем. Если же вы ответили, что брадобрея бреет кто-то другой, то сторонники парадоксов опять напомнят условия задачи — в них указано, что если человек не бреется сам, то его обязан брить именно брадобрей, ведь он же сказал — бреет всех, кто не бреется сам.

Хотя если вы нашли неожиданное решение — не спешите, далее вы увидите, как сторонники парадоксов обойдут любые неожиданные решения. Пока не стоит глубоко погружаться в логические противоречия данной задачи, она лишь вводит вас в мир парадоксов и за ней последуют ещё несколько противоречивых задачек.

Парадоксы множеств

Правда сильно беспокоиться за математику всё же не стоит, ведь и кризис этот был не первый, и на содержательные разделы математики он повлиял слабо. Аналогично парадоксу брадобрея сто с лишним лет назад был открыт парадокс, серьёзно повлиявший на основы математики, при чём на столько серьёзно, что этот период был назван кризисом основ математики. Но тем не менее, кризис наглядно показал слабость наших познаний в той области, которая всегда считалась строгой и чуть ли не всеобъемлющей.

Представим множество (или же список, массив) всех положительных целых чисел, а затем представим число, соответствующее количеству чисел в нашем множестве. Сначала покажем основу одного из парадоксов на упрощённом примере. Если да, то что будет со множеством после добавления в него числа, равного количеству его элементов с прибавленной единицей? Представили? Но если прибавить к количеству единицу, то мы получим элемент, которого в множестве нет, значит вроде бы представить такой список нельзя, ведь каждый раз будет всплывать вопрос о новом элементе. Если там уже есть все элементы, вспомним, что они могут быть отсортированы по возрастанию и тогда станет очевидным, что наибольший элемент равен количеству элементов в нашем множестве. Так чего же мы реально можем и чего не можем? Но с другой стороны — мы же можем сформулировать фразу «множество всех положительных целых чисел».

А если представить множество всех множеств, да такое, что бы ни одно множество не включало бы само себя в качестве элемента? Пока вы раздумываете над ответом на предыдущий вопрос мы зададим вам следующий. Например множество чисел не включает себя в качестве элемента. Возможно ли такое? Так может и все остальные множества можно так же представить?

Если вы скажете, что такое возможно, то тогда сторонники парадоксов зададут вопрос — а включает ли представленное множество само себя?

Если вы скажете «да», то сторонники парадоксов ответят, что по условию задачи множество не должно включать таких множеств, которые включают сами себя, но раз вы сказали «да», то включили представленное множество само в себя и тем запретили его включение, ведь оно стало множеством, включающим себя, что противоречит условию задачи.

Если же вы скажете «нет», то сторонники парадоксов ответят, что по условиям задачи представленное множество должно включать все множества, не включающие себя, а значит и само представленное множество (которого нет в самом себе) тоже должно быть в нашем множестве.

Ведь мало того, что здравый смысл куда-то убежал, но незадолго перед этим математики успели предложить использовать теорию множеств (а мы как раз говорим о её представителе — множестве всех множеств, не включающих самих себя) для построения на её основе всей математики. Так же как и, возможно, вы сейчас, математики всего мира были слегка задеты явным отсутствием здравого смысла в предложенном парадоксе. Как вам такая математика? И в результате случился кризис — в основе математики, как оказалось, отсутствует здравый смысл. На эту тему хорошо выразился Винни-Пух — она хорошая, но почему-то хромает (с).

Далее для полноты картины приведём парочку парадоксов несколько иного плана. Но это ещё не всё.

Парадокс самоприменимости

Например — слово «трёхсложно» состоит из трёх слогов и его смысл нам тоже говорит о трёх слогах, поэтому такое слово можно назвать самоприменимым. Есть слова, смысл которых можно применить к этим словам. А вот слово «сиреневенький» обычно пишется совсем не сиреневым цветом и на сирени не растёт, значит оно несамоприменимо. Аналогично слово «русское» написано по русски и выражает смысл принадлежности к русскому, то есть опять самоприменимо. Применимо ли такое слово к самому себе? Но есть ещё слово (и мы его только что видели) «несамоприменимо».

Если борьба со здравым смыслов внутри вас успешно закончилась и вы сказали, что слово самоприменимо, то сторонники парадоксов скажут — как же оно может быть самоприменимо, если в нём написано — несамоприменимо?

Если же вы скажете, что слово несамоприменимо, то сторонники парадоксов ответят, что смысл слова совпадает с определением, которое вы ему дали (несамоприменимо), а значит вы сами же и показали способ самоприменимости, и значит вы опять неправы!

Но радость сторонников парадоксов будет неполной, если мы не покажем ещё одну задачку.

Парадокс ложного высказывания

Задачка очень простая — вы должны ответить «да» или «нет» на вопрос — является ли следующее высказывание ложным — «это высказывание ложное».

Если вы ответите «нет», то сторонники парадоксов скажут, что в высказывании же написано — оно ложное, значит вы говорите что-то не то.

Значит вы опять ответили неправильно! Если вы ответите «да», то сторонники парадоксов скажут, что раз вы утверждаете, что высказывание ложное (ответив «да»), и само высказывание утверждает, что оно ложное, то где же здесь ложь? Далее сторонники парадоксов опять радуются.

Немного демистификации

Да что нам — куча математиков до сих пор не уверена в непротивречивости основ своей науки! Мы не станем унывать, наблюдая веселье в стане сторонников парадоксов, но попробуем вскрыть то зло, которое, так сказать, усиленно пудрило нам мозги во всех приведённых парадоксах.

Посмотрим внимательнее на состав участников парадокса. Сначала про брадобрея. Так же мы увидим некое отношение, в которое вступает брадобрей с теми, кого он бреет. Мы заметим пару сущностей, это брадобрей и некие «все», которых брадобрей бреет. На языке математики мы бы могли написать — х бреет у, то есть некий икс находится в отношениях с неким игреком, а называется отношение — бреет. Назовём это отношение по простому — «бреет». Суть алгоритма — проверка на условие «не бреется сам». Далее в парадоксе мы видим алгоритм отбора в состав сущности «все». Так же мы видим обязательство брадобрея брить всех, кто входит в упомянутую сущность «все».

Теперь, записав для нашей задачки часть «дано», мы переходим к части «решение».

После завершения работы комиссии мы имеем группу лиц, которых нашему брадобрею необходимо соответствующим образом обработать. Предположим, что некая комиссия отбирает людей из деревни, и всех, кто ответит «не бреюсь сам», включает в состав множества из условия задачи (множество «все»). В итоге получаем вполне благостную картину — все, кто не бреется сам, будут спокойно побриты нашим брадобреем. Далее можно легко представить, что в момент опроса брадобрей сказал, что он бреется сам, а потому его в группу подлежащих обработке лиц не включили. Как минимум, никаких препятствий со стороны здравого смысла мы здесь не увидим, а потому легко представим все подходящие по условию бритые лица и весьма довольного брадобрея. А разве не будут? Но вот сторонники парадоксов в такой ситуации окажутся не у дел, ведь парадокса-то, получается, совсем нет!

Ведь не зря же математики всего мира озаботились кризисом! Но на самом деле парадокс есть.

Они скажут, что брадобрей же утверждал, что бреет тех, кто не бреет себя сам, а потому он не имеет права брить себя, ведь тогда он будет брить того, кто бреет себя сам и тем нарушит условие задачи. Для выявления причины возникновения парадокса необходимо включить в уравнение его сторонников. Но в результате брадобрей должен быть включен в состав множества лиц, которые подлежат бритью брадобреем. Тогда в терминах логики мы можем сказать, что утверждение «брадобрей бреет брадобрея» ложное по условиям задачи. И брить их всех должен именно брадобрей, ведь иначе тут же появятся сторонники парадоксов и напомнят нам про условия задачи.

Обозначим брадобрея буквой Б, отношение «бреет» пусть останется без изменений, оно и так короткое. Для большей наглядности сократим описание ситуации. Тогда в краткой записи получим: Множество «все» так же можно не сокращать.

1) ложно(Б бреет Б) значит Б принадлежит к «все»
2) Х бреет Б и Х=Б

Вторая строчка говорит нам, что некий икс должен брить брадобрея и этот икс должен быть сам брадобрей. Такая запись означает, что (первая строка) из того, что брадобрей не бреет брадобрея следует, что брадобрей принадлежит ко множеству «все».

Получим: Теперь выполним минимальные преобразования со второй строчкой — заменим в ней икс на Б, ведь по условию они равны, а так же обозначим истинность получившегося утверждения.

истинно(Б бреет Б)

Но из строки (1) имеем:

ложно(Б бреет Б)

И эти два условия (по требованию сторонников парадоксов) должны выполняться одновременно.

Как мы видели, до вмешательства сторонников парадоксов в деревне царил мир и порядок, все должные лица были бриты и брадобрей был доволен. Так в чём же здесь зло? Говоря по другому — мы получили противоречивые требования. А вот после вмешательства сторонников парадоксов мы получили требование одновременно истинности и ложности утверждения о том, что брадобрей бреет брадобрея. Как бы мы не выкручивались, как бы не изобретали новые и новые варианты ухода от парадокса, например заявляя, что брадобрей вообще не бреется и носит бороду, либо что брадобрей женщина и не имеет необходимости бриться, но сторонники парадоксов неуклонно возразят — этого в условиях задачи нет, значит всё должно быть именно так, как мы сказали. И конечно же, если требование противоречивы, то и решить задачу с такими требованиями невозможно. Но в результате подчинения строгости заявлений сторонников парадоксов мы получаем неразрешимую задачу.

После указания на противоречивость условий мы можем попробовать выделить ряд факторов, которые привели к ситуации, когда по сути глупые требования (а как ещё назвать требование одновременно бриться и не бриться?) были восприняты всерьёз очень и очень многими людьми.

Аналогичная задача, но с очевидным противоречием в условиях, была бы сразу отвергнута и никаких парадоксов бы никто не знал, но именно скрытый характер противоречивости ограничений привёл к многочисленным попыткам решения безнадёжной задачи. Во первых, стоит указать на неявность противоречивых требований. А вот в задаче про брадобрея неочевидность противоречивости ограничений потянула за собой значительные последствия. Например, задача найти число, которое одновременно больше нуля и меньше нуля, вряд ли привела бы к возникновению понятия парадокса, ведь в такой задаче всем очевиден противоречивый смысл требований. Поэтому в любом парадоксе в первую очередь следует искать неявные противоречия в ограничениях, накладываемых на решение задачи.

Здесь стоит подчеркнуть — именно ограничения на решение, а не что-то другое. Во вторых, помимо неочевидности в подобных задачах присутствуют собственно противоречивые ограничения (которых на первый взгляд не видно). Поэтому следует всегда внимательно изучать ограничения на решение, пытаясь выявить в них возможные противоречия. То есть не предметная область, к которой относится задача, каким-то образом противоречива, и не язык, на котором излагается задача, но противоречия закладываются вне этих понятий и именно в виде ограничений на возможное решение.

Жёсткое следование только лишь озвученным условиям, исключающее нахождение решений вне противоречивой области, есть очевидный признак, который следует внимательно искать и в других задачах, которые на первый взгляд и не выглядят парадоксально. В третьих, противоречивые задачи обязательно включают искажающий реальность формализм.

Но тем не менее, будет полезно указать и на них. В остальном же в задаче про брадобрея мы видим свойственные именно ей особенности, которые могут и не повториться в других парадоксах.

Если бы в задаче не ставилось такое жёсткое ограничение на «брить всех», то брадобрея можно было бы легко исключить из опасного для задачи списка. Во первых, для задачи про брадобрея характерно безапелляционное требование «брить всех», при этом не допускающее никаких исключений из правила «кто не бреется сам». Поэтому и в других задачах, где ставится жёсткое требование из разряда «всех таких и только таких элементов», стоит уделить внимание поиску внутренних противоречий в такой постановке. Если бы в задаче не было ограничения на исключительно тех, кто не бреется сам, то опять брадобрей обошёлся бы нам лишь лёгким испугом вместо создания кризиса основ математики.

Без брадобрея система сущностей развалилась бы и не составила бы единой и осмысленной задачи. Во вторых, брадобрей в задаче выступает особенной сущностью, отличающейся от всех остальных своим участием в бритье каждого, кого по условию положено брить. Но именно особенный статус брадобрея и привёл к возникновению противоречия в требованиях, ведь помимо отношения «как ко всем», требующего, что бы брадобрей был побрит, к брадобрею предъявляются ещё и требования не бриться самому, а другие брадобреи исключаются в условии задачи. Но не смотря на такой особенный статус в системе сущностей и ограничений, сторонники парадоксов настаивают на едином отношении ко всем участникам процесса, не взирая на дополнительные ограничения, которые накладываются на брадобрея. Иначе легко получить очередное противоречие в требованиях. Поэтому в других задачах следует выявлять системообразующую функцию элементов, и в случае её наличия — тщательно проверять соотносимость требований «ко всем» и требований к данному элементу.

Проблемы в остальных парадоксах

Пока мы пропустим парадокс множеств, поскольку он нам понадобится позднее в связи с проблемами теории множеств.

На ряду с указанной ранее особенность в виде неявности противоречия в условиях здесь мы можем добавить ещё и свободу интерпретации смысла самоприменимости. А сейчас посмотрим, где же кроется зло в парадоксе самоприменимости. Поэтому в данном случае была бы не лишней строгость определений. То есть смысл отношения самоприменимости можно трактовать довольно широко, а потому в эти широкие зазоры легко может проскользнуть противоречие. Но и завышать строгость до абсолюта тоже нельзя, иначе, как мы видели на примере брадобрея, противоречия станут следствием самой строгости.

Для всех остальных слов нам достаточно понять, как область определения смысла слова соотносится с самим словом (то есть вычислить количество слогов или обратить внимание на язык, на котором написано слово), а вот для слова «несамоприменимо» мы имеем не вполне очевидную область определения, возможно совпадающую с самой системой, в которой производится оценка самоприменимости. Так же, как и в парадоксе брадобрея, в парадоксе самоприменимости мы имеем специальный элемент системы, выделяющийся среди остальных тем, что при его рассмотрении изменяется алгоритм работы системы. То есть для слова «несамоприменимо» сама задача поясняет нам некий возможный смысл применимости, но пояснение это носит неявный и нестрогий характер.

Очевидно, что после получения любого ответа на вопрос о самоприменимости, сторонники парадоксов просто запускают алгоритм оценки ответа, который сравнивает ответ со смыслом слова «несамоприменимо» и выдаёт отрицание как в случае самоприменимости, так и в случае несамоприменимости. Далее можно выяснить конкретные ограничения, которые противоречат друг другу именно для слова «несамоприменимо». При этом если для других слов можно было получить однозначный алгоритм, например, подсчёта количества слогов, то для слова «несамоприменимо» алгоритм выявления самоприменимости совершенно неочевиден. Алгоритм состоит в указании на смысл слова в ответ на решение о самоприменимости, и в указании на совпадение смыслов в случае ответа о несамоприменимости. Каков алгоритм самоприменимости для слова «несамоприменимо»? А в задаче требуется не только дать ответ о применимости, но и неявным образом найти алгоритм самоприменимости, только после применения которого возможен внятный ответ.

И при создании такого нового алгоритма мы уже ступаем на зыбкую почву борьбы с неявно задаваемыми смыслами, которые сторонники парадоксов, несомненно будут трактовать исключительно в свою пользу. Если принять, что такого алгоритма в природе не существует, то сразу становится очевидным, что такое слово несамоприменимо, но тогда потребуются как минимум один новый алгоритм, убеждающий сторонников парадоксов в необходимости игнорировать сходство ответа «несамоприменимо» со смыслом слова «несамоприменимо». Как минимум, это очень сложная задача, чем и обеспечивается жизнеспособность парадокса — просто никто не хочет убивать время и нервы на достижение чего-то, что, вполне возможно, недостижимо. То есть потребуется создать алгоритм, строго доказывающий нечто в условиях наличия совершенно нестрогих правил, которые трактуются весьма произвольно.

И опять мы попадём в условия, когда нужно будет строго доказывать нечто, а ответ сторонников парадоксов по прежнему будет опираться на весьма нестрогие правила. Если же принять, что алгоритм самоприменимости существует, то опять же мы столкнёмся с жёсткой позицией сторонников парадоксов, требующих принять их опровержение в виде указания на противоречие смысла слова «несамоприменимо» наличию алгоритма его самоприменимости.

То есть в руках сторонников парадоксов есть простой алгоритм, обеспечивающий ответ «неправильно» во всех возможных случаях. В целом для случая самоприменимости имеем удачное соответствие слова «несамоприменимо» как положительному, так и отрицательному ответу, позволяющее сторонникам парадоксов в обоих случаях отрицать аргументацию решающих задачу. Поскольку поиск такого алгоритма представляется, как минимум, сложным, у сторонников парадоксов появляется очень серьёзное преимущество перед всеми, кто пытается решить такую задачу. Альтернатива для пытающихся решить задачу состоит в поиске алгоритма, способного обойти расставленные сторонниками парадоксов препятствия.

Вопрос — есть ли жизнь около звезды на противоположном конце вселенной? Для большей наглядности можно привести пример похожей задачи, но с очевидным большим отличием сложности позиции критика и позиции решающего. При выдаче решения в виде «жизнь есть» критик заявит «докажи!», что очевидно непросто. Очевидно, что строгое доказательство в данном случае несколько затруднено, в то время как позиция критика предполагает лишь простейшие сомнения в ответ на любое решение. При выдаче решения в виде «жизни нет» критик заявит «а вдруг есть?».

Здесь прямой смысл фразы противопоставляется любому ответу. Очень похожая ситуация имеет место и для парадокса ложного высказывания. То есть как и в парадоксе самоприменимости, выбрана удачная фраза, позволяющая строить простой алгоритм отрицания любого из двух возможных ответов. Но в одном случае указывается на несовпадение смыслов, что принимается за доказательство ошибочности решения, а в другом случае указывается на совпадение смыслов, что опять принимается за доказательство ошибочности решения. При этом алгоритм доказательства правильности решения опять выглядит несопоставимо сложным по сравнению с отсутствующей сложностью на стороне сторонников парадоксов.

Для такой постановки по прежнему нет проблем со стороны сторонников парадоксов, и по прежнему непонятно как аргументировать расплывчатое понимание бессмысленной по своей сути фразы. Можно свести к минимуму предыдущий парадокс, задав вопрос — истинна ли ложь? Но именно такой отстранённый от реальности подход, как мы видим, легко приводит к противоречиям типа отрицательного ответа в любом случае. Бессмысленность не даёт возможности возражать сторонникам парадоксов аргументированно, но их самих такая бессмысленность вполне устраивает, ибо она ими трактуется формально, как некие условия задачи, которая совершенно не обязана иметь хоть какой-то смысл. Если мы можем доказать, что чисел одновременно больших и меньших нуля не бывает, то в случаях с удачно составленными фразами не имеющими смысла, доказательство противоречивости нетривиально (ведь если нет смысла, то что доказывать?), а потому в таких случаях сложно выявить противоречия в ограничениях на решение, что в свою очередь ведёт к наличию почвы для прорастания очередных парадоксов. А неявность противоречий позволяет сторонникам парадоксов настаивать на своём. Именно поэтому ещё раз стоит подчеркнуть возможность ухода формальных рассуждений в сторону бессмысленного, а потому чреватого парадоксами, что опять может поколебать в том числе такие строгие науки, как математика.

Проблемы теории множеств

Очень просто — если некая формальная теория позволяет вывести противоречивые результаты, то это означает, что такая теория позволяет вывести абсолютно всё. Чем парадоксы опасны для математики? Поэтому стоит тщательно следить за отсутствием противоречий в используемых теориях. Другими словами — такая теория даст нам возможность вывести любую глупость. Но как избежать противоречий в теориях?

В этой теории рассуждения о множествах оформлялись в виде предложений на естественном языке (изначально на немецком), но как мы видели немного выше, рассуждениям на естественном языке свойственен уход иногда в противоречивую сторону, а иногда и просто в бессмысленную. Сначала была, так называемая, наивная теория множеств. Поэтому создатель теории множеств Георг Кантор пропустил ряд подобных моментов, когда потребности его теории подсказали ему вроде бы простой, но не до конца обдуманный способ их удовлетворения. Но неочевидность такого поворота мешает даже весьма продвинутым умам вовремя рассмотреть опасность. Другая потребность — в конструировании множеств математическим путём — так же привела к аналогу парадокса множеств, но уже записанному в математических терминах. Так само наличие возможности представить всё что угодно позволяет нам представить бесконечное множество чисел, но как мы видели немного выше, за таким представлением могут последовать парадоксы.

Здесь, как было показано на примере парадокса брадобрея, имеем системообразующий объект (множество множеств) и ограничение по использованию такого объекта «на общих основаниях» не отменяющее дополнительных ограничений, налагаемых на объект из-за его системообразующей роли. Вспомним парадокс множеств — можно ли включить во множество всех множеств, не включающих самих себя, само это множество? Такое противоречие в ограничениях, естественно, ведёт к парадоксу, то есть к неразрешимости поставленной задачи в рамках заданных ограничений. В результате, теперь нам это очевидно, после небольших преобразований системы ограничений мы получим требование одновременно принадлежности множества самому себе и запрета на принадлежность самому себе. Но сама постановка подобной задачи при создании теории множеств оказалась совершенно вне поля зрения создателя теории.

Кантор (создатель теории множеств) не смог преодолеть этот барьер, но поскольку тогда в математике была очень актуальна тема её обоснования, теория Кантора пришлась кстати именно для такой роли, а потому её всё же попытались развивать, но немного по другому.

Но поскольку одной строгости отнюдь не достаточно для устранения парадоксов (именно поэтому выше приведен гораздо более обширный список признаков потенциальных проблем) математики вскоре даже в строгом изложении теории нашли парадокс. Математики увидели причину возникновения парадоксов в недостаточно строгом определении теории, что позволяло некоторые вольности, которые, как мы видели, могут привести к полной бессмысленности некоторых определений.

То есть был создан математический фильтр, который работал очень просто — все элементы, которые через него прошли, включались в новое множество. Для формирования множеств математики предложили использовать набор функций, возвращающих истину если элемент принадлежит множеству и ложь, если элемент не принадлежит множеству. Сама идея очень проста и, естественно, вполне работоспособна, точно так же, как работоспособно бесконечное количество фильтров в технике и, особенно (в чистом виде, очень близком к теории множеств), в информационных технологиях. Таким образом можно было строгим математическим путём конструировать любые множества. Но вот её строгая реализация оказалась не такой простой.

Для фильтрации была предложен следующая формула:

$\exists y \forall x (x \in y \equiv P(x))$

На обычном языке это означает, что существует такой у, для которого истинной является формула, в которой для любого х является истинной формула, которая отделена скобками. Здесь значки $\exists$ и $\forall$ обозначают «существует такой» и «для всех», что в сочетании с названием переменной (х или у) даёт ограничение на следующую за знаком формулу. В целом формула в скобках утверждает, что если элемент х прошёл фильтрацию в функции Р(х), то он принадлежит множеству у, и наоборот — принадлежащие у элементы удовлетворяют Р(х). В скобках же мы видим значок $\in$, обозначающий принадлежность х ко множеству у, а затем знак эквивалентности, который объявляет принадлежность х множеству у эквивалентным выполнению логической функции Р(х) (её называют высказывательная функция или предикат). Вся формула читается так — существует множество у, для которого при любом х выполняется такое ограничение, что если х отфильтрован функцией Р(х), то он принадлежит множеству у.

В формуле хоть и ограничен произвол, присутствующий в неформально заданном фильтре, но всё же совершена та же ошибка, которая привела к парадоксу брадобрея. Теперь обратим внимание на наличие разницы между изначальной идеей фильтрации и её оформлением в виде формулы.

Но в выше приведённых парадоксах мы видели, что такая трактовка всех «под одну гребёнку» является причиной возникновения парадоксов. В формуле все без исключения элементы х трактуются одинаково. Поскольку в формуле нет ограничений на значения х, то ничто нам не мешает подставить вместо него у, а вместо фильтрующей функции подставить $\neg( x \in x)$. В результате быстро был найден контр-пример, показывающий противоречивость такой формулы. Тогда после всех замен получим: Здесь знак $\neg$ обозначает логическое отрицание.

$( x \in x) \equiv \neg( x \in x)$

Правда в строгом виде необходимо вывести две такие формулы, что бы одна была отрицанием другой, но мы оставим это упражнение математикам, ведь для нас смысл понятен и так. То есть отрицание принадлежности оказалось эквивалентным принадлежности. Здесь мы видим, что трактовка всех элементов х, как подчиняющихся общим требованиям, привела к противоречию при подстановке вместо х системообразующего элемента у, что уже было ранее показано для других парадоксов.

Но исправили они ситуацию следующим образом (знак $\wedge$ означает логическое И): В результате математикам пришлось исправляться.

$\forall a \exists y \forall x (x \in y \equiv (x \in a \wedge P(x)))$

Идея была правильной — если брать для нового множества только те элементы, которые входят во множество допустимых параметров Р(х), тогда мы получаем возможность исключить попадание в набор системообразующего элемента у. То есть в предыдущую формулу добавлено множество а, которое дополнительно ограничивает допустимые для включения в у элементы. Но получилось ли в результате устранить парадоксы?

Такая свобода в показанных выше случаях приводила к возможности в одной фразе или формуле задать два противоречащих друг другу ограничения. Как и в прежнем варианте мы имеем полную свободу для переменных а и х, а это, если мы вспомним признаки парадоксов, весьма опасное ослабление ограничений. Поэтому есть теоретическая возможность задать такую формулу Р(х), которая противоречила бы остальным конструкциям общей формулы, что и может привести к противоречию. Кроме того, системообразующий элемент у в новой формуле опять трактуется наравне со всеми, поскольку всё ещё допустима подстановка у вместо х.

Для этого сначала рассмотрим вариант, когда а равно пустому множеству, тогда $x \in a$ невыполнимо и для достижения эквивалентности придётся выбрать у, для которого невыполнимо $x \in y$. Но мы не будем искать такую подстановку, а просто дадим оценку возможных вариантов любых подстановок в новую формулу. То есть при таких подстановках формула не содержит противоречий. Таким значением у может быть пустое множество. Тогда всё будет зависеть от возможности подобрать такой у, что бы при любом х и любой Р(х) формула оставалась истинной. Но поскольку а может быть любым, нам нужно проверить что будет, если а будет непустым множеством. Здесь стоит заметить, что такая формула в теории множеств принята в качестве аксиомы, а потому её ложность при некоторых подстановках станет несколько неудобным моментом для всей теории.

При заданном непустом множестве а множество у может принимать следующие значения:

1) не пересекающееся с а
2. 1) пустое множество
2) непустое множество:
2. 2. 2) пересекающееся с а:
2. 2. 1) включающее дополнительные к пересечению элементы:
2. 1) пересечение меньше а
2. 1. 1. 2. 2. 2) пересечение равно а
2. 2. 2) не включающее дополнительные к пересечению элементы:
2. 1) пересечение меньше а
2. 2. 2. 2. 2) пересечение равно а

Здесь $\wedge$ — логическое и, $\vee$ — логическое или. Ниже приведены ограничения на х и значения Р(х), при которых аксиома становится ложной.

1) $x \in y \wedge \neg (x \in a)$
2. 1) $x \in a \wedge P = (x=x)$
2. 1. 2. 2. 1) $x \in y \wedge \neg(x \in a) \vee x \in y \wedge x \in a \wedge \neg(x \in x) \wedge P = (x \in x) \vee x \in y \wedge x \in a \wedge x \in x \wedge P = \neg(x \in x) \vee \neg(x \in y) \wedge x \in a \wedge P = (x = x)$
2. 2) $x \in y \wedge \neg(x \in a)$
2. 1. 2. 2. 2. 1) $x \in y \wedge x \in x \wedge P = \neg(x \in x) \vee x \in y \wedge \neg(x \in x) \wedge P = (x \in x)$$\vee \neg(x \in y) \wedge x \in a \wedge P = (x=x)$
2. 2) $x \in y \wedge x \in x \wedge P = \neg(x \in x) \vee x \in y \wedge \neg(x \in x) \wedge P = (x \in x)$ 2.

Как мы видим, в случае, если а содержит какие-либо элементы, нет ни одного варианта подстановки у, для которого нельзя указать такие х и/или Р(х), что бы аксиома всегда была истинной.

На личный взгляд автора этого текста вывод мог бы быть таким — при переводе здравой идеи о применении фильтра на сухой язык формул была допущена ошибка в виде потери связи с реальностью, или же говоря по другому, не все свойства изначальной системы были выявлены и формализованы подобающим образом. Какой вывод можно сделать из такого результата? Ну а читатель теперь уже точно в курсе, как самостоятельно разобраться в подобных вопросах. Ну а признавать выводы или отвергать, конечно же, выбирать читателю.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть