Хабрахабр

[Из песочницы] Как мы учили ИИ распознавать скопления галактик

image

Сейчас я поделюсь с вами тем, что мы сделали в результате этой непростой работы. Недавно, вместе с командой друзей-астрофизиков, я закончила проект, целью которого был поиск далеких, скрытых тканью космоса галактик и их скоплений.

Анализ данных

Галактики и их скопления – крупномасштабные объекты видимой части Вселенной, поэтому результаты посвященных им исследований представляют ценную информацию для расширения области знания о различных масштабных структурах, позволяют проследить эволюцию масс скоплений и выявить особенности формирования современного вида Вселенной. Подробнее об этом я расскажу в следующих статьях (если вам будет интересно).

Можно написать программу, выполняющую эту задачу. Для анализа гигантского объема информации, поступающей с телескопов, хотя бы на наличие галактик требуется автоматический механизм (или больше астрономов). Но как научить её отличать галактики и их скопления от других объектов космоса?

Нам повезло, в космосе нашлось место для «магии», а конкретно для эффекта Сюняева-Зельдовича, открытом еще в прошлом веке.

Эффект заключается в следующем: изначально фотоны реликтового излучения не энергичны, как ленивец на ветке эвкалипта, но после взаимодействия с электронами, обладающими большим количеством энергии внутри газа, их энергия возрастает за счет температуры горячего газа в скоплении, который разогревается при адиабатическом сжатии либо под действием сил гравитации, либо при столкновении галактик и облаков межгалактического вещества.

1. image
Рис. Эффект Сюняева — Зельдовича.

В этот момент в направлении на скопления галактик фотонов реликтового излучения с заданной температурой в миллиметровом диапазоне не хватает, поэтому в направлении на скопление галактик там наблюдается провал по отношению к среднему фону. За счет увеличения энергии, фотон увеличивает свою частоту и переходит из миллиметрового диапазона в субмиллиметровый. А в субмиллиметровом диапазоне, наоборот, избыток фотонов и локальный пик.

равномерно заполняющего Вселенную теплового излучения, далее CMB), наблюдаемый вдоль линии скопления галактик, выглядит слабее на низких частотах и ярче на высоких. Проявляется это так: эффект космического микроволнового фона (т.е.

2, изображение слева) и положительный сигнал для частот выше порога с отсутствием сигнала на нулевой частоте 217 ГГц (рис. Таким образом, под влиянием эффекта фон преобразуется в отрицательный сигнал для частот ниже порога (рис. Эта особенность эффекта и позволяет астрономам находить кластеры галактик и сверхскопления в микроволновой области спектра.
Чем не магия? 2, изображение справа).

2. image
Рис. Влияние эффекта Сюняева-Зельдовича на видимые свойства скоплений галактик

Экспериментальные доказательства существования эффекта были получены совсем недавно, когда на телескопе Planck астрофизики проводили исследования электромагнитного спектра и обратили внимание на то, что на одних частотах наблюдаемая область неба кажется «пустой», а на других на ней вырисовываются целые скопления галактик.

3. image
Рис. Слева — изображение, полученное «Планком». Это первое сверхскопление, открытое с помощью эффекта Сюняева-Зельдовича. Правая панель показывает изображение, полученное с помощью обсерватории «XMM-Ньютона».

Это все здорово, но что сделали мы?

Знаете, часто возникают ситуации, когда вы принимаете решение заняться чем-либо просто потому, что вам это нравится, хотя вы предполагаете, что это не понадобится в будущем. Это была такая же ситуация.

Мне иногда даже нравятся такие ситуации, потому что только в них приходится решать задачу на оптимальную стратегию. Когда текст для основной части работы был написан и оставалось совсем немного времени для оформления результатов, а до дедлайна оставалось чуть меньше недели, я сидела перед монитором и не знала, что делать. Курс посвящен работе с Inception, свёрточной нейросетью компании Google, который я когда-то прошла «для саморазвития» (ссылка в конце статьи). Я понимала, что распознать большое количество данных (около 10 000 изображений) не смогу физически, а за моими плечами только три пройденных курса, один из которых меня как раз и выручил.

7, библиотека Keras для работы с машинным обучением и большими данными и Theano для работы с числовыми данными. Для работы с нейронной сетью использовано программное обеспечение Anaconda 2, язык программирования Python 2.

Поэтому через четыре дня у нас была программа для работы с нейросетями глубокого обучения. Конечно без советов людей, которые занимаются машинным обучением в течение двух лет, не обошлось.

Сверточные слои позволяют извлекать несколько карт признаков из входных изображений, а слои объединения выполняют заданную подвыборку на картах функций. Сеть состоит из последовательностей сверточных слоев (CL) и слоев объединения (PL).

Для классификации изображений выходной уровень является полностью связанным слоем с числом единиц, равным количеству классов. Эти последовательности слоев соответствуют этапу выделения признаков. Сеть построена по базовой архитектуре с двумя этапами свертки (особого вида интегрального преобразования) и подвыборки, подключенными к классификатору, что представлено на рисунке.

4. image
Рис. Архитектура нейронной сети

Каталоги фотографий для обучения сети и дальнейшего распознавания скоплений галактик составлен с помощью GLESP — схемы пикселизации карт космического микроволнового фона, которая создает строгое ортогональное разложение отображения. Обучение сети происходило без учителя. Данные с миссии представлены в виде 6 135 изображений, сделанных на частотах 100, 143, 217, 353 и 545 ГГц. Для создания каталога обучения нейронной сети использованы данные с миссии телескопа Planck, целью которой был поиск галактик и их скоплений при помощи эффекта Сюняева-Зельдовича.

И, о чудо, мы нашли интересное скопление. Одни из результатов работы сети представлены на рисунке 5.

5. image
Рис. Результаты работы сети

Программа была применена к каталогу изображений разных участков неба и в настоящее время анализирует их на наличие галактик и их скоплений.

В перспективе проекта мы будем более подробно изучать принцип влияния эффекта Сюняева-Зельдовича на видимые свойства крупномасштабных объектов Вселенной и создадим универсальный аналитический алгоритм для более подробного изучения космических объектов.

До встречи в следующих статьях! Я очень надеюсь, что это небольшая статья хоть на минутку перенесла вас в чудесный мир космоса.

Полезные ссылки:

  1. Курс по Inception
  2. О. В. Верходанов, Н. В. Верходанова, О. С. Улахович и др., Астрофизическая бюллетень, том 73, 1, 2018
  3. Ostriker, Jeremiah P., Ethan T., Nature, 322 (6082): 804, 1986
  4. Passmoor S., Cress C., MNRAS, 397 (1), 2009
  5. Planck Collaboration, Astron. Astrophys.571, A29, 2014
Показать больше

Похожие публикации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»