Главная » Хабрахабр » [Из песочницы] EHCI по-людски на русском языке

[Из песочницы] EHCI по-людски на русском языке

image

Введение

Всех приветствую. Сегодня хочу поделиться опытом и всё-таки по-моему внятно объяснить про такой, на первый взгляд, простой стандарт для USB 2.0 хост-контроллера.

0 порт — это всего лишь 4 пина, по двум из которых просто передаются данные(Как, к примеру, COM-порт), но самом деле всё не так, и даже совсем наоборот. Изначально можно представить себе что USB 2. EHCI — довольно замысловатый стандарт, который позволяет обеспечить надежную и быструю передачу данных от софта до самого девайса, и в обратную сторону. USB-контроллер в принципе не даёт нам возможности передавать данные как через обычный COM-порт.

Простой пример: хотите написать свою ОС для мини-ПК, дабы какая-нибудь винда или очередной дистрибутив линукса не загружали железо, и вы использовали всю его мощь исключительно в своих целях.
Возможно, вам пригодиться эта статья, если, к примеру, вы не имеете достаточных навыков написания драйверов и чтение документации к хардвейру.

Что такое EHCI

Что же, давайте начнем. EHCI — Enhanced Host Controller Interface, предназначен для передачи данных и управляющих запросов USB-устройствам, и в другую сторону, а в 99% случаев — является связующим звеном, между каким-либо софтом и физическим устройством. EHCI работает как PCI-устройство, а соответственно использует MMIO(Memory-Mapped-IO) для управления контроллером(да-да, я знаю, что некоторые PCI-девайсы используют порты, но тут я всё обобщил). В документации от Intel описан лишь принцип работы, и никаких намеков на алгоритмы, написанные хотя бы на псевдокоде, нет вовсе. EHCI имеет 2 типа MMIO-регистров: Capability и Operational. Первые служат для получения характеристик контроллера, вторые же — для его управления. Собственно, прикреплю саму суть связи софта и EHCI контроллера:

image

Так же, прошу заметить, что EHCI является улучшенной версией UHCI, который так же был разработан Intel на несколько годов раньше. Каждый EHCI контроллер имеет несколько портов, каждому из которых могут быть подключены какие-либо USB-устройства. К примеру, у вас есть USB-клавиатура(А большинство клавиатур года так до сих пор были именно такими), которая работает на USB 1. Для обратной совместимости любой UHCI/OHCI контроллер, который имеет версию ниже, чем EHCI, будет компаньоном к EHCI. 1 — 12 мегабит в секунду, а FullSpeed USB 2. 1(заметим, что максимальная скорость работы USB 1. 0 портом, при подключении клавиатуры к компьютеру хост-контроллер EHCI как ни как будет работать с USB 1. 0 имеет пропускную способность аж в 480 мбит/сек), а у Вас имеется компьютер с USB 2. Данная модель показана на следующей схеме: 1.

image

Так же на будущее хочу сразу предупредить, что Ваш драйвер может работать не правильно из-за такой вот нелепой ситуации: вы инициализировали UHCI, а после чего EHCI, при этом добавили два одинаковых устройства, поставили в регистр порта бит Port Owner Control, после чего UHCI перестал работать, из-за того, что EHCI автоматически перетягивает порт на себя, а порт на UHCI перестаёт откликаться, эту ситуацию надо отслеживать.

Так же, давайте рассмотрим схему, показывающую саму архитектуру EHCI:

image

Справа написано про очереди — о них чуть позже.

Регистры EHCI контроллера

Для начала хочется еще раз уточнить, что через данные регистры вы будете управлять вашим устройством, поэтому они очень важны — да и без них программирование EHCI невозможно.

Есть одно но: сначала идут Capability регистры, а только после них — Operational, поэтому по смещению 0(от предыдущего адреса, который мы получили по смещению 0x10 относительно начала MMIO нашего EHCI) лежит один байт — длина Capability-регистров. Для начала вам надо получить адрес MMIO, который выдан данному контроллеру, по смещению +0x10 будет лежать адрес наших долгожданных регистров.

Capability регистры

По смещению 2 лежит регистр HCIVERSION — номер ревизии данного HC, который занимает 2 байта и содержит BCD версию ревизии (что такое BCD можно узнать из википедии).
По смещению +4 лежит регистр HCSPARAMS, его размер — 2 слова, он содержит структурные параметры устройства и его биты показывают следующее:

  • Бит 16 — Port Indicators — доступные световые индикаторы для подключенных USB-устройств.
  • Биты 15:12 — номер контроллера-компаньона, который присвоен данному контроллеру
  • Биты 11:8 — количество портов у компаньон-контроллера
  • Бит 7 — Port Routing Rules — показывает, как данные порты привязаны к компаньон-портам
  • Бит 4 — Port Power Control — показывает, надо ли включать питание каждому порту, 0 — питание подаётся автоматически
  • Биты 3:0 — количество портов у данного контроллера.
  • По смещению +8 лежит регистр HCCPARAMS — показывает параметры совместимости, его биты значат следующее:
  • Бит 2 — доступность асинхронной очереди,
  • Бит 1 — доступность периодической (последовательной) очереди
  • Бит 0 — 64-битная совместимость

Operation регистры

По смещению 0 лежит регистр USBCMD — командный регистр контроллера, его биты означают следующее:

  • Биты 23:16 — Interrupt Threshold Control — показывает сколько микро-фреймов будет использоваться на один обычный фрейм. Чем больше, тем быстрее, но если больше 8 — то микро-фреймы будут обрабатываться с той же скоростью, что и для 8.
  • Бит 6 — прерывание после каждой транзакции в асинхронной очереди,
  • Бит 5 — используется ли асинхронная очередь,
  • Бит 4 — использование последовательной очереди,
  • Биты 3:2 — размер FrameList'a (о этом — дальше). 0 означает 1024 элемента, 1 — 512, 2 — 256, 3 — зарезервировано
  • Бит 1 — устанавливается для выполнение сброса хост-контроллера.
  • Бит 0 — Run/Stop

.
Далее, по смещению +4 идет регистр USBSTS — статут хост-контроллера,

  • Бит 15 показывает используется ли асинхронная очередь
  • Бит 14 показывает используется ли последовательная очередь,
  • Бит 13 — показывает, что обнаружена пустая асинхронная очередь,
  • Бит 12 установлен в 1, если при обработке транзакции произошла ошибка, тогда хост-контроллер остановит выполнение всех очередей.
  • Бит 4 установлен в 1, если произошла серьезная ошибка, хост-контроллер останавливает выполнение всех очередей.
  • Бит 3 FrameList (Регистр) Rollover — ставится в 1, когда хост-контроллер обработал весь frameList.
  • Бит 1 — USB Error Interrupt — генерировать ли прерывание при ошибках?
  • Бит 0 — USB Interrupt — выставляется после успешной обработки транзакции, если в TD был установлен IOC

Не устали? Можете налить себе крепкого чайку и принести печенок, мы еще в самом начале!

Сюда я просто записываю 0, т.к. По смещению +8 лежит регистр USBINTR — регистр включения прерываний
Чтобы долго не писать, и тем более, Вам долго не читать, значения битов данного регистра можно посмотреть в спецификации, ссылка на неё будет оставлена внизу. абсолютно не имею желания писать обработчики, мапить прерывания и т.п., так что это я считаю почти что абсолютно бессмысленным.

По смещению +12(0x0C) лежит регистр FRINDEX, в котором просто лежит текущий номер фрейма, при чем, хочу заметить, что последние 4 бита показывают номер микро-фрейма, в старшие 28 — номер фрейма (так же значение не обязательно меньше размера frameList'а, если вам нужен индекс — лучше брать его с маской 0x3FF(или же 0x1FF, и т.п.).

Регистр CTRLDSSEGMENT лежит по смещению +0x10, он показывает хост-контроллеру старшие 32 бита адреса листа фреймов.

Регистр PERIODICLISTBASE имеет смещение +0x14, в него вы можете положить младшие 32 бита листа фреймов, заметим, что адрес должен быть выравнен по размеру страницы памяти (4096).

Регистр ASYNCLISTADDR имеет смещение +0x18, в него вы можете положить адрес асинхронной очереди, заметим, что он должен быть выравнен по границе 32 байта, при этом должен находиться в первых четырех гигабайтах физической памяти.

Вы должны выставить бит 0 после завершения настройки устройства, он имеет смещение +0x40. Регистр CONFIGFLAG показывает, настроено ли устройство.

Каждый порт имеет свой командно-статусный регистр, каждый регистр порта располагается со смещением +0x44 + (PortNumber — 1)*4, его биты значат следующее: Перейдем к регистрам портов.

  • Бит 12 — питание порта, 1 — питание подаётся, 0 — нет.
  • Бит 8 — Port Rest — устанавливается для сброса устройства.
  • Бит 3 — Port Enable/Disable Change — выставляется при изменении статуса «включенности» порта.
  • Бит 2 — порт включен/не включен.
  • Бит 1 — Изменение статуса подключения, ставится в 1, к примеру, если вы подключили, или отключили USB устройство.
  • Бит 0 — статус подключения, 1 — подключено, 0 — нет.

Теперь перейдем к самому соку.

Структуры передачи данных и запросов

Организация структуры для обработки запросов включает в себя очередь и трансфер дескрипторы(TDs).

На данный момент мы рассмотрим только 3 структуры.

Последовательный список

Последовательный(Периодичный, Pereodic) список устроен следующим образом:

image

Как видно на схеме, обработка начинается с получения нужного фрейма из фрейм листа, каждый его элемент занимает 4 байта и имеет следующую структуру:

image

Как видно на картинке, адрес очереди/трансфер дескриптора выровнен по границе 32 байта, бит 0 означает то, что хост-контроллер не будет обрабатывать данный элемент, биты 3:1 показывают тип того, что будет обрабатывать хост-контроллер: 0 — изосинхронный TD(iTD), 1 — очередь, 2 и 3 в данной статье я рассматривать не буду.

Асинхронная очередь

Хост контроллер обрабатывает данную очередь только тогда, когда фрейм последовательный пустой, либо хост-контроллер обработал весь последовательный список.

Схема: Асинхронная очередь представляет собой указатель на очередь, где содержатся другие очереди, которые нуждаются в обработке.

image

qTD(Queue Element Transfer Descriptor)

Данный TD имеет следующую структуру:

image

Next qTD Pointer — указатель на продолжение очереди для обработки(для Horizontal Execution), бит 0 Next qTD Pointer'а показывает, то, что дальше нет еще одной очереди.
qTD Token — токен TD, показывает параметры передачи данных:

  • Бит 31 — Data Toggle (об этом дальше)
  • Биты 30:16 — количество данных для передачи, после завершения транзакции их значение уменьшается на количество переданных данных.
  • Бит 15 — IOC — Interrupt On Complete — вызвать прерывание после завершения обработки дескриптора.
  • Биты 14:12 показывают номер текущего буфера, в который/из которого производиться обмен данными, об этом далее.
  • Биты 11:10 — допустимое количество ошибок. Данная таблица показывает, когда счетчик количества ошибок уменьшается:

    image

    Сноска 3 — Ошибки буфера данных — это проблемы с хостом. Сноска 1 — обнаружение Babble либо Stall автоматически останавливает выполнение головы очереди. Они не учитывают повторные попытки устройства.

  • 9:8 — PID Code — тип токена: 0 — токен на вход(от хоста к устройству), 1 — токен на выход(от устройства к хосту), 2 — «SETUP» токен
  • Биты 7:0 показывают статус TD:
    Бит 7 показывает, что данный TD имеет активное состояние(т.е. хост-контроллер обрабатывает данный TD)
    Бит 6 — Halted — показывает, что произошла какая-либо ошибка и выполнение TD остановлено.
    Бит 4 — Babble Detected — количество данных, которые мы отправили устройству, или на оборот, меньше, чем мы передаём, т.е., к примеру, нам устройство отправило 100 байт данных, а мы читаем только 50 байт, а потом еще 50. Бит Halted так же будет установлен, если данный бит установлен в 1.
    Бит 3 — Transaction Error — произошла ошибка во время проведения транзакции.

qTD Buffer Page Pointer List — любой из 5 буферов. Содержит ссылку на то, куда в памяти производить транзакцию(отправить данные устройству/принять данные с устройства), все адреса в буферах, кроме первого, должны быть выровнены по размеру страницы (4096 байт).

Голова очереди

Голова очереди(Queue Head) имеет следующую структуру:

image

Queue Head Horizontal Link Pointer — указатель на следующую очередь, биты 2:1 имеют следующие значения в зависимости от типа очереди:

image

Endpoint Capabilities/Characteristics — характеристики очереди:

  • Биты 26:16 содержат максимальный размер пакета для передачи
  • Бит 14: Data Toggle Control — показывает, где хост-контроллер должен брать изначальное значение Data Toggle, 0 — игнорирует бит DT в qTD, сохраняет бит DT для головы очереди.
  • Бит 13:12 — характеристики скорости передачи: image
  • Биты 11:8 — номер конечной точки, к которой выполняется запрос
  • Биты 6:0 — адрес устройства

Endpoint Capabilities: Queue Head DWord 2 — продолжение предыдущего двойного слова:

  • Биты 29:23 — номер Хаба
  • Биты 22:16 — адрес Хаба

Current qTD Link Pointer — указатель на текущий qTD.

Переходим к самому интересному.

Драйвер EHCI

Начнем с того, какие запросы может выполнять EHCI. Есть 2 типа запросов: Control — а-ля команд, и Bulk — к конечным точкам, для обмена данными, к примеру, абсолютное большинство флешек(USB MassStorage) использует тип передачи данных Bulk/Bulk/Bulk. Мышь и клавиатура для передачи данных тоже используют Bulk — запросы.

Инициализируем EHCI и настраиваем асинхронную и последовательные очереди:

// Base I/O Address PciBar bar; PciGetBar(&bar, id, 0); EhciController *hc = VMAlloc(sizeof(EhciController)); hc->capRegs = (EhciCapRegs *)(uintptr_t)bar.u.address; hc->opRegs = (EhciOpRegs *)(uintptr_t)(bar.u.address + hc->capRegs->capLength); // Read the Command register // Читаем командный регистр uint cmd = ROR(usbCmdO); // Write it back, setting bit 2 (the Reset bit) // Записываем его обратно, выставляя бит 2(Reset) // and making sure the two schedule Enable bits are clear. // и проверяем, что 2 очереди выключены WOR(usbCmdO, 2 | cmd & ~(CMD_ASE | CMD_PSE)); // A small delay here would be good. You don't want to read // Небольшая задержка здесь будет неплоха, Вы не должны читать // the register before it has a chance to actually set the bit // регистр перед тем, как у него не появится шанса выставить бит ROR(usbCmdO); // Now wait for the controller to clear the reset bit. // Ждем пока контроллер сбросит бит Reset while (ROR(usbCmdO) & 2); // Again, a small delay here would be good to allow the // reset to actually become complete. // Опять задержка ROR(usbCmdO); // wait for the halted bit to become set // Ждем пока бит Halted не будет выставлен while (!(ROR(usbStsO) & STS_HCHALTED)); // Выделяем и выравниваем фрейм лист, пул для очередей и пул для дескрипторов // Замечу, что все мои дескрипторы и элементы очереди выравнены на границу 128 байт hc->frameList = (u32 *)VMAlloc(1024 * sizeof(u32) + 8192 * 4); hc->frameList = (((uint)hc->frameList) / 16384) * 16384 + 16384; hc->qhPool = (EhciQH *)VMAlloc(sizeof(EhciQH) * MAX_QH + 8192 * 4); hc->tdPool = (EhciTD *)VMAlloc(sizeof(EhciTD) * MAX_TD + 8192 * 4); hc->qhPool = (((uint)hc->qhPool) / 16384) * 16384 + 16384; hc->tdPool = (((uint)hc->tdPool) / 16384) * 16384 + 16384; // Asynchronous queue setup // Инициализируем асинхронную очередь EhciQH *qh = EhciAllocQH(hc); // Это указатель на нашу очередь, она у нас будет одна // указываем, что это очередь qh->qhlp = (u32)(uintptr_t)qh | PTR_QH; // устанавливаем бит, который показывает, что это Голова очереди qh->ch = QH_CH_H; qh->caps = 0; qh->curLink = 0; qh->nextLink = PTR_TERMINATE; qh->altLink = 0; qh->token = 0; // Заполняем буферы нулями for (uint i = 0; i < 5; ++i) hc->asyncQH = qh; // Periodic list queue setup // Инициализируем последовательную очередь qh = EhciAllocQH(hc); // Мы ничего не делаем qh->qhlp = PTR_TERMINATE; qh->ch = 0; qh->caps = 0; qh->curLink = 0; qh->nextLink = PTR_TERMINATE; qh->altLink = 0; qh->token = 0; // Заполняем буферы for (uint i = 0; i < 5; ++i) { qh->buffer[i] = 0; qh->extBuffer[i] = 0; } qh->transfer = 0; qh->qhLink.prev = &qh->qhLink; qh->qhLink.next = &qh->qhLink; hc->periodicQH = qh; // Заполняем фреймлист ссылками на нашу последовательную очередь for (uint i = 0; i < 1024; ++i) hc->frameList[i] = PTR_QH | (u32)(uintptr_t)qh; kprintf("FrameList filled. Turning off Legacy BIOS support..."); // Check extended capabilities // Отключаем BIOS Legacy support uint eecp = (RCR(hccParamsO) & HCCPARAMS_EECP_MASK) >> HCCPARAMS_EECP_SHIFT; if (eecp >= 0x40) { // Disable BIOS legacy support uint legsup = PciRead32(id, eecp + USBLEGSUP); kprintf("."); if (legsup & USBLEGSUP_HC_BIOS) { PciWrite32(id, eecp + USBLEGSUP, legsup | USBLEGSUP_HC_OS); kprintf("."); for (;;) { legsup = PciRead32(id, eecp + USBLEGSUP); kprintf("."); if (~legsup & USBLEGSUP_HC_BIOS && legsup & USBLEGSUP_HC_OS) { break; } } } } kprintf("Done\n"); // Disable interrupts // Отключаем прерывания //hc->opRegs->usbIntr = 0; MWIR(ehcibase, usbIntrO, 0); // Setup frame list // Устанавливаем ссылку на фреймлист //hc->opRegs->frameIndex = 0; WOR(frameIndexO, 0); //hc->opRegs->periodicListBase = (u32)(uintptr_t)hc->frameList; WOR(periodicListBaseO, (u32)(uintptr_t)hc->frameList); // копируем адрес асинхронной очереди в регистр //hc->opRegs->asyncListAddr = (u32)(uintptr_t)hc->asyncQH; WOR(asyncListAddrO, (u32)(uintptr_t)hc->asyncQH); // Устанавливаем сегмент в 0 //hc->opRegs->ctrlDsSegment = 0; WOR(ctrlDsSegmentO, 0); // Clear status // Чистим статус //hc->opRegs->usbSts = ~0; WOR(usbStsO, ~0); // Enable controller // Запускаем контроллер, 8 микро-фреймов, включаем // последовательную и асинхронную очередь //hc->opRegs->usbCmd = (8 << CMD_ITC_SHIFT) | CMD_PSE | CMD_ASE | CMD_RS; WOR(usbCmdO, (8 << CMD_ITC_SHIFT) | CMD_PSE | CMD_ASE | CMD_RS); while (ROR(usbStsO)&STS_HCHALTED); // Configure all devices to be managed by the EHCI // Говорим, что завершили //hc->opRegs->configFlag = 1; WOR(configFlagO, 1);\ // Probe devices // Пробуем порты EhciProbe(hc);

Собственно, код для сброса порта в изначальное состояние:

volatile u32 *reg = &hc->opRegs->ports[port]; // Включаем питание на порту, ждём 100мс *reg|=(1<<12)|(1<<20); Wait(100); // Сбрасываем порт, ждем 50 мс EhciPortSet(reg, PORT_RESET | (1<<12) | (1<<20) | (1<<6)); Wait(50); EhciPortClr(reg, PORT_RESET); // Wait 100ms for port to enable (TODO - what is appropriate length of time?) // Ждем 100 мс чтобы порт включился, в документации написано, // что 100 мс должно хватить uint status = 0; for (uint i = 0; i < 10; ++i) { // Delay Wait(10); // Get current status // Получаем текущий статус status = *reg; // Check if device is attached to port // Проверяем подключение устройства к контроллеру if (~status & PORT_CONNECTION) break; // Acknowledge change in status // Если статус поменялся - чистим биты порта if (status & (PORT_ENABLE_CHANGE | PORT_CONNECTION_CHANGE)) { EhciPortClr(reg, PORT_ENABLE_CHANGE | PORT_CONNECTION_CHANGE); continue; } // Check if device is enabled // Проверяем устройство на то, что оно запустилось if (status & PORT_ENABLE) break; } return status;

Control-запрос к устройству:

static void EhciDevControl(UsbDevice *dev, UsbTransfer *t)
{ EhciController *hc = (EhciController *)dev->hc; UsbDevReq *req = t->req; // Determine transfer properties // Обозначаем свойства транзакции uint speed = dev->speed; uint addr = dev->addr; uint maxSize = dev->maxPacketSize; uint type = req->type; uint len = req->len; // Create queue of transfer descriptors // Создаём очередь TDs EhciTD *td = EhciAllocTD(hc); if (!td) return; EhciTD *head = td; EhciTD *prev = 0; // Setup packet // Инициализирующий пакет uint toggle = 0; uint packetType = USB_PACKET_SETUP; uint packetSize = sizeof(UsbDevReq); EhciInitTD(td, prev, toggle, packetType, packetSize, req); prev = td; // Data in/out packets packetType = type & RT_DEV_TO_HOST ? USB_PACKET_IN : USB_PACKET_OUT; u8 *it = (u8 *)t->data; u8 *end = it + len; //EhciPrintTD(td); while (it < end) { td = EhciAllocTD(hc); if (!td) return; toggle ^= 1; packetSize = end - it; if (packetSize > maxSize) packetSize = maxSize; EhciInitTD(td, prev, toggle, packetType, packetSize, it); it += packetSize; prev = td; } // Status packet // Получаем статус td = EhciAllocTD(hc); if (!td) return; toggle = 1; packetType = type & RT_DEV_TO_HOST ? USB_PACKET_OUT : USB_PACKET_IN; EhciInitTD(td, prev, toggle, packetType, 0, 0); // Initialize queue head // Инициализируем голову очереди: EhciQH *qh = EhciAllocQH(hc); EhciInitQH(qh, t, head, dev->parent, false, speed, addr, 0, maxSize); // Wait until queue has been processed // Ждем пока очередь не будет обработана EhciInsertAsyncQH(hc->asyncQH, qh); EhciWaitForQH(hc, qh);
}

Код обработки очереди:

if (qh->token & TD_TOK_HALTED) { t->success = false; t->complete = true; } else if (qh->nextLink & PTR_TERMINATE) if (~qh->token & TD_TOK_ACTIVE) { if (qh->token & TD_TOK_DATABUFFER) kprintf(" Data Buffer Error\n"); if (qh->token & TD_TOK_BABBLE) kprintf(" Babble Detected\n"); if (qh->token & TD_TOK_XACT) kprintf(" Transaction Error\n"); if (qh->token & TD_TOK_MMF) kprintf(" Missed Micro-Frame\n"); t->success = true; t->complete = true; } if (t->complete) ....

И теперь запрос к конечной точке(Bulk-запрос)

static void EhciDevIntr(UsbDevice *dev, UsbTransfer *t)
{ EhciController *hc = (EhciController *)dev->hc; // Determine transfer properties // Обговариваем характеристики транзакции uint speed = dev->speed; uint addr = dev->addr; uint maxSize = t->endp->desc->maxPacketSize; uint endp = t->endp->desc->addr & 0xf; EhciTD *td = EhciAllocTD(hc); if (!td) { t->success = false; t->complete = true; return; } EhciTD *head = td; EhciTD *prev = 0; // Data in/out packets uint toggle = t->endp->toggle; uint packetType = t->endp->desc->addr & 0x80 ? USB_PACKET_IN : USB_PACKET_OUT; uint packetSize = t->len; EhciInitTD(td, prev, toggle, packetType, packetSize, t->data); // Initialize queue head // Инициализируем голову очереди EhciQH *qh = EhciAllocQH(hc); EhciInitQH(qh, t, head, dev->parent, true, speed, addr, endp, maxSize); //printQh(qh); // Schedule queue // Добавляем в очередь EhciInsertPeriodicQH(hc->periodicQH, qh);
}

Думаю, что тема достаточно интересная, в интернете на русском документаций, описаний и статей на эту тему почти нет, а если есть — очень размыто. Если интересна тема работы с железом и разработки ОС, то есть много чего рассказать.

Доки: Спецификация


Оставить комментарий

Ваш email нигде не будет показан
Обязательные для заполнения поля помечены *

*

x

Ещё Hi-Tech Интересное!

[Перевод] Введение в ptrace или инъекция кода в sshd ради веселья

Конечно, это несколько искусственная задача, так как есть множество других, более эффективных, способов достичь желаемого (и с гораздо меньшей вероятностью получить SEGV), однако, мне показалось клёвым сделать именно так. Цель, которой я задался, была весьма проста: узнать введённый в sshd ...

Дайджест свежих материалов из мира фронтенда за последнюю неделю №339 (12 — 18 ноября 2018)

Предлагаем вашему вниманию подборку с ссылками на новые материалы из области фронтенда и около него.     Медиа    |    Веб-разработка    |    CSS    |    Javascript    |    Браузеры    |    Занимательное Медиа • Подкаст «Frontend Weekend» #79 – Олег Поляков об основании CodeDojo и о том, как это стало основным местом работы• Подкаст «Пятиминутка React» ...