Хабрахабр

Это электробус: что мы знаем о транспорте с батарейкой

О том, что повлияло на их развитие и как изменились технологии: от создания ёмких аккумуляторов до развития зарядной инфраструктуры — можно узнать в нашей новой статье.
После появления первого электротранспорта в XIX веке и второго всплеска популярности в 70-х годах XX века электробусы вновь вышли на улицы городов.

Первый электротранспорт: привет из XIX века

Электромобили появились задолго до машин с двигателем внутреннего сгорания. Готтлиб Даймлер и Карл Бенц запатентовали первые самодвижущиеся повозки с бензиновым ДВС в 1886 году, тогда как первый электромобиль для перевозки людей был представлен в 1837 году. Из-за высокой стоимости и низкой эффективности первые электромобили не могли тягаться с машинами с паровым двигателем. Стоимость обслуживания авто с цинковым аккумулятором в 40 раз превышала цену обслуживания паровой машины на угле.

В 1890 году американец Уильям Моррисон построил первый электробус — автомобиль вместимостью 6 человек, развивающий скорость до 19 км/ч и проезжающий на одном заряде до 160 км. После появления доступных свинцово-кислотных аккумуляторов электромобили успели ненадолго войти в моду. 24 батареи, весившие в сумме почти 350 кг, выдавали ток 112 А с напряжением 58 В и требовали для полной перезарядки 10 часов.

Источник: american-automobiles.ru
Электробус Уильяма Моррисона.

Одного заряда аккумулятора хватало на 60 км пути, поэтому на конечных станциях опустевшие батареи заменяли на новые — процесс занимал всего три минуты. В самом начале XX века в Лондоне на маршрутах городского транспорта успешно работали 20 электробусов, на то время более эффективные и экономичные, чем их бензиновые аналоги.

Источник: Лондонский музей транспорта
Лондонский электробус со съемной батареей – прообраз будущей Tesla с быстросъемными аккумуляторами.

В отличие от бензиновых машин, электротранспорт не дешевел, а состояние экологии пока никому не внушало опасений. К 1900 году 38% автомобилей в США работали на электричестве, но совершенствование двигателей внутреннего сгорания и снижение цен на топливо резко затормозило развитие отрасли автономного электротранспорта — уже к 30-м годам XX века электробусы практически исчезли. Крест на инвестициях в автобусы с аккумуляторами поставило появление в 20-х годах дешевых троллейбусов.


Процесс замены аккумулятора в электробусе — полная автоматика, как в XXI веке.
Источник: Британская библиотека

Даже легковые автомобили снабжались неэкономичными шестилитровыми двигателями, обслуживание которых в 70-х стало буквально «золотым». Но из-за низких цен на топливо в середине XX века индустрия ДВС пошла по пути наращивания объема, что напрямую сказывалось на расходе бензина.  Так в английском Манчестере в 1974 году на городские маршруты вышли электробусы Seddon Pennine 4-236 на хлоридных аккумуляторах. Сложившаяся ситуация вызвала новый всплеск популярности электромобилей.


Редкий кадр действующего в 1975 году электробуса Seddon Pennine 4-236.
Источник: Alan Snatt

Автомобиль прожил до 1983 года, после испытаний почтовой службой немецкого города Бонна он был признан нерентабельным. Единственный универсальный коммерческий автомобиль, оставшийся на память о том времени — минивэн Mercedes-Benz LE 306, чей быстросъемный аккумулятор обеспечивал мощность около 76 лошадиных сил, но истощался уже через 50 км пути.

Источник: Mercedes-Benz
Электрический минивэн Mercedes-Benz LE 306 — напоминание об эпохе топливного кризиса.

На фоне обсуждения экологических проблем идея перевода дизельных автобусов на электричество стала довольно популярной, и немалую роль в этом сыграло появление литий-ионных батарей, способных накапливать энергию  и обеспечивать автономное движение электробусов в течение длительного времени. Серьезно о массовом производстве и использовании электротранспорта заговорили лишь в XX веке, когда общество стало задумываться об экологических угрозах и осознавать, какой вред окружающей среде наносят выхлопные газы автомобилей. Изобретение таких батарей решило и экономическую проблему, сделав производство и обслуживание электротранспорта более экономичным и открыв ему дорогу на массовый рынок.

Вопросы питания

В современных электробусах для питания используются аккумуляторы или суперконденсаторы. Последний способ хранения энергии по-своему интересен, хотя и сильно ограничивает возможности электротранспорта.

Очевидно, что на одном заряде конденсатора автобус проедет всего несколько километров, а значит о какой-либо автономности говорить не приходится. Суперконденсаторы могут хранить всего 5% энергии в сравнении с литий-ионными батареями схожего объема. На восстановление заряда уходят секунды. Но позитивное свойство конденсаторов — скорость зарядки.

Источник: Shanghai Aowei Technology
Китайский суперконденсаторный Ultracap Bus на остановке с зарядной станцией — выглядит, как участок с троллейбусными проводами.

Кроме того, до 80% энергии торможения преобразуется в электричество и возвращается обратно в конденсаторы — это дает экономию до 50%. Так в китайском городе Нинбо действует конденсаторный электробус, которому для подзарядки хватает всего 10 секунд — благодаря развитой инфраструктуре зарядных станций, автобус получает энергию на каждой остановке во время высадки-посадки пассажиров, которая обычно длится немного дольше.

Кроме того, внештатные ситуации в виде неожиданных пробок могут оставить автобус с разряженными конденсаторами на дороге и создать дополнительные проблемы для дорожного трафика. Суперконденсаторы постоянно совершенствуются, но внедрение электробусов на таких элементах питания требует очень дорогостоящей инфраструктуры в виде зарядных станций высокой мощности на каждой остановке.

Разработка литий-ионных аккумуляторов представляет собой сложный процесс поиска необходимого баланса между мощностью, ёмкостью, компактностью и ценой. Литий-ионный аккумулятор – это не какой-то конкретный вид батарей с единственным утвержденным составом, а целое семейство энергетических элементов. Каждый тип литий-ионной батареи хорош для конкретной сферы применения. Идеала пока не существует. Далеко не все они используются в электротранспорте, многие находят свое место в электронике с небольшим энергопотреблением.

Именно такую батарею вы найдете в мобильных устройствах и портативной потребительской электронике. Аккумуляторы на оксиде лития-кобальта (LiCoO2), – самые доступные и популярные на сегодняшний день, — имеют отличную ёмкость на единицу объема, низкую стоимость и напряжение 3,6В на ячейку. Электробус на LiCoO2 обойдется дешевле, чем на других типах аккумуляторов, но сможет работать только в теплых странах на коротких маршрутах с минимальной загрузкой, вроде трансферов внутри кампусов. Минусы таких аккумуляторов тоже известны: малый ток разряда, максимум 1000 циклов зарядки/разрядки до начала серьезной деградации ёмкости, долгая зарядка и невозможность работы при отрицательных температурах.

Это дало возможность использовать LiMn2O4 в устройствах с краткосрочным высоким энергопотреблением, например, в электромобилях Nissan Leaf и BMW i3. Литий-марганцевый аккумулятор (LiMn2O4) благодаря трехмерной структуре смог обеспечить высокий ток разряда — до 30 раз превышающим его ёмкость. Поэтому литий-марганцевые батареи комбинируют с другим типом аккумуляторов — NMC. Но у литий-марганцевых аккумуляторов обнаружились свои недостатки: еще меньший, чем у литий-кобальтовых батарей жизненный ресурс и нетерпимость к холоду.

км).
NMC-аккумулятор Nissan Leaf стоит вдвое дешевле NCA-батареи Tesla, но и ёмкость теряет примерно вдвое быстрей (70% после 100 тыс. Источник: Benjamin Nelson  

Именно поэтому для использования в электромобилях NMC комбинируют с LiMn2O4 — при обычной езде в основном работают NMC-ячейки, а при ускорении высокий ток отдают ячейки LiMn2O4. Литий-никель-марганец-кобальт-оксидные батареи, или просто NMC, получили неплохую удельную энергоёмкость и срок службы (до 2000 циклов разрядки), но ток отдачи у них оказался невелик.

Скорость зарядки и ток разрядки у NCA-аккумуляторов средние, их нельзя записать в достоинства или недостатки. Литий-никель-кобальт-алюминий-оксидные батареи (LiNiCoAlO2, или NCA) отличаются высокой удельной ёмкостью и приемлемой стоимостью. Именно NCA стали источником энергии для автомобилей Tesla и систем хранения Powerwall.

Источник: wk057
540-килограммовая NCA-батарея Tesla Model S на 85 кВт при замене из-за износа отправляется в системы хранения энергии Tesla Powerwall.

А дальше замена и утилизация изношенных элементов. Но одна особенность NCA-батарей бросила тень на Tesla еще до того, как владельцы могли столкнуться с потенциальными проблемами – аккумуляторы имеют сравнимые с литий-кобальтными ячейками срок службы в 500 циклов. Но, несмотря на этот положительный опыт, для городского электротранспорта NCA-аккумуляторы не являются лучшим выбором, ведь пробег автобусов в разы и даже на порядки превышает пробег личных авто. Реальный опыт показал, что даже спустя 200 тысяч километров батареи в электромобилях Tesla остаются рабочими, теряя треть ёмкости.

Литий-титанатный ответ

Литий-титанатные аккумуляторы (Li4Ti5O12, LTO) известны еще с 80-х годов прошлого века. Toshiba активно разрабатывает и производит этот тип батарей под названием SCiB (Super Charge Ion Battery). Для изготовления анода в них используется литий-титанат вместо графита. При этом катод может быть заимствован у NMC-батарей. Замена графита позволила увеличить эффективную площадь анода с 3 м2/г до 100 м2/г, что в лучшую сторону влияет на скорость зарядки ячейки и ток разряда. Так в 2017 году Toshiba продемонстрировала SCiB-батарею, способную восстановить до 90% своей ёмкости всего за 5 минут.

Источник: КБ «Энергия»
Пористая структура литий-титанатного оксида обеспечивает в 30 раз большую площадь, чем графит, и в разы больший срок службы.

Ранние образцы выдерживали до 7000 циклов разрядки, а современные аккумуляторы обеспечивают 15000-20000 циклов — с этими показателями не сравнится ни один другой тип литий-ионных батарей. Литий-титанатные батареи стабильно отдают ток в десять раз превышающий их ёмкость, и в тридцать раз при импульсных нагрузках. На холоде элемент почти не теряет эффективность — при температуре –30 градусов ёмкость литий-титанатной ячейки понижается до 80% от номинала. Кроме того, LTO-батареи пожаробезопасны, при разгерметизации они нагревают до 70 градусов и остывают, перегрев им также не страшен.

Источник: Proterra
Литий-титанатная батарея Toshiba, используемая в автобусах Proterra.

Звучит, как идеальный аккумулятор для телефона. Невероятная живучесть, мгновенная зарядка, стойкость к холодам. В первую очередь, это низкая удельная ёмкость 50-80 Вт/кг, тогда как у традиционных литий-кобальтовых элементов она равна 150-200 Вт/кг — то есть, для получения равной ёмкости литий-титанатная ячейка должна быть вдвое-втрое объемней. Но есть у LTO-батарей и свои недостатки, которые пока ограничивают круг их применения. В-третьих, пока литий-титанатные батареи отличаются высокой ценой, втрое большей, чем у NCA-батарей. Во-вторых, номинальное напряжение ячейки равно всего 2,4 В против 3,6 В у литий-кобальтовых. Именно поэтому встроить литий-титанатный аккумулятор в смартфон пока невозможно — получится дорогой элемент с низкой ёмкостью и недостаточным для работы устройства напряжением.

Зато в электробусах, где нет дефицита места, а также требуется высокий ресурс батареи, литий-титанатным аккумуляторам самое место.

Преимущество SCiB более чем очевидно.
На графике показан пробег тестовой машины на SCiB и литий-кобальт-оксидных батареях. Источник: Toshiba

Вопрос подзарядки

Без развитой инфраструктуры электробус превращается в проблему. Заряжать электробус можно тремя разными способами: долгой ночной зарядкой, быстрой зарядкой на конечных станциях и экспресс-зарядкой на остановках.

Если суперконденсаторам хватает питания в течение нескольких секунд, то для подзарядки аккумулятора нужны хотя бы минуты. Зарядные станции на остановках общественного транспорта требуются, например, электробусам на суперконденсаторах: над павильоном устанавливается контактная площадка или провода, которых автобус касается пантографом. Учитывая, что современные литий-титанатные батареи Toshiba восстанавливают большую часть заряда за пять минут, на маршрутную сеть электробуса достаточно установить всего несколько зарядных станций, которые смогут поддерживать аккумуляторы автобуса заряженными.

Заряжать автобус всего раз в сутки и отправлять его на маршрут на весь день невозможно по объективным причинам. Долгая ночная зарядка в общественном транспорте используется только в паре с одним из двух других способов. Во-вторых, к автобусному парку необходимо подводить очень мощные линии электроснабжения, чтобы одновременно питать десятки и даже сотни автобусов. Во-первых, для работы в течение хотя бы половины дня нужны очень ёмкие аккумуляторы, которые займут много места в салоне — это обстоятельство резко удорожает стоимость каждого автобуса.


Серийный электробус КамАЗ заряжается на конечной остановке московского маршрута №73.
Источник: alisa

А что дальше?

Городской электротранспорт всегда считался сомнительной экзотикой, а сейчас в мире работают сотни тысяч электробусов. Чемпионом по адаптации новых технологий является Китай, где находятся почти 99% существующих в мире электрических автобусов. По оценкам Bloomberg New Energy Finance, к 2025 году 47% автобусов в мире будут электрическими.

Ежегодно многие российские города закупают электротранспорт и выводят его на постоянные маршруты, создается специальная инфраструктура и предлагаются решения в области энергообеспечения. Россия тоже не отстает от мировых тенденций. Не исключено, что переход на электротранспорт затянется на десятилетия и, возможно, мы застанем время, когда личные электромобили перестанут быть предметом роскоши и составят достойную конкуренцию дизельным аналогам.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть