Железо

ASIC для машинного обучения должны проектироваться автоматически

А ведь хочется и нужно, чтобы было быстрее: сегодня выдал алгоритм, а через неделю забрал готовый цифровой проект. Вряд ли кто-то будет спорить с тем, что проектирование заказных БИС (ASIC) ― это далеко не простой и не быстрый процесс. Такие редко нужны миллионными партиями, на разработку которых можно потратить сколько угодно денег и людских ресурсов, если это надо сделать в кратчайшие сроки. Дело ведь в том, что сверхспециализированные БИС ― это едва ли не штучный продукт. На этом фронте уже не обойтись багажом, накопленным компьютерным рынком и, особенно, прорывами GPU на направлении машинного обучения (ML). Специализированные, а от этого наиболее эффективные для решения своих задач ASIC должны обходиться в разработке дешевле, что становится мегаактуальным на современном этапе становления машинного обучения.

Программа по машинному обучению в реальном времени предусматривает разработку компилятора или программной платформы, которые бы могли автоматически проектировать архитектуру чипа для конкретного ML-фрейморка. Для ускорения проектирования ASIC для задач ML агентство DARPA учреждает новую программу ― Real Time Machine Learning (RTML). Специалисты по разработке алгоритмов ML не обладают знаниями проектировщиков чипов, а проектировщики редко знакомы с принципами машинного обучения. Платформа должна автоматически анализировать предложенный алгоритм для машинного обучения и набор данных для обучения этому алгоритму, после чего на языке Verilog она должна будет выдать код для создания специализированной ASIC. Программа RTML должна поспособствовать, чтобы преимущества одних и других были объединены в автоматизированной платформе по разработке ASIC для машинного обучения.

Также программа RTML и созданные программные платформы для автоматического проектирования ускорителей ML будут использоваться для разработки и испытания новых алгоритмов ML и наборов данных. В течение жизненного цикла работы программы RTML найденные решения должны будут проверяться в двух главных областях применения: работа в сетях 5G и обработка изображений. Партнёром DARPA по программе RTML выступит Национальный научный фонд (NSF), который также занимается проблемами машинного обучения и разработкой алгоритмов ML. Тем самым ещё до проектирования «кремния» можно будет оценить перспективы новых фреймворков. В дальнейшем аппаратное проектирование и создание алгоритмов будут иди комплексным решением, что приведёт к появлению самообучающихся в реальном времени машинных систем. Разработанный компилятор будет передан в NSF, а обратно DARPA рассчитывает получить компилятор и платформу по проектированию алгоритмов ML.

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть