Hi-Tech

Алгоритмы жизни и смерти: как понять искусственный интеллект, который будет лечить людей?

И это не удивительно: огромная индустрия, которая генерирует феноменальный объем данных и доходов, в которой технологические достижения могут улучшать или спасать жизни миллионов людей. Когда речь заходит о применении машинного обучения, чаще всего разговоры ведут о медицинской сфере. И все к этому идет, но… Едва ли неделя проходит без появления исследования, которое предполагает, что алгоритмы очень скоро будут лучше экспертов выявлять пневмонию или болезнь Альцгеймера — заболевания сложных органов, от глаза до сердца.

И здесь, опять же, алгоритмы предлагают заманчивое решение. Проблемы переполненных больниц и перегруженного медперсонала отравляют государственные системы здравоохранения и приводят к росту расходов на частные системы здравоохранения. Можно ли заменить эти посещения умным чатботом — который будет оснащен портативными диагностическими тестами, используя последние достижения в области биотехнологий? Сколько раз на самом деле нужно посетить врача? Ненужные посещения можно было бы сократить, и пациентов можно было бы диагностировать и направлять к специалистам быстрее, не дожидаясь первичной консультации.

С ИИ, который может исследовать тысячи сканов за минуту, «скучная рутина» остается на машинах, и доктора могут сосредоточиться на тех частях работы, которые требуют более сложного, тонкого, основанного на опыте суждения о лучших методах лечения и потребностях пациента. Как и в случае с алгоритмами искусственного интеллекта, цель состоит не в том, чтобы заменить врачей, а в том, чтобы дать им инструменты для сокращения повседневных или повторяющихся частей работы.

Высокие ставки

Проблемы алгоритмов «черного ящика», которые принимают необъяснимые решения, достаточно серьезны, когда вы пытаетесь понять, почему автоматизированный чатбот-рекрутер не впечатлился вашим рассказом во время собеседования. И все же, как и в случае с алгоритмами ИИ, существуют риски, связанные с их использованием — даже для задач, которые считаются обыденными. В контексте здравоохранения, где принимаемые решения могут означать жизнь или смерть, последствия алгоритмического сбоя могут быть фатальными.

Однако они ужасно объясняют нижележащую логику обнаруженных ими отношений: есть кое-что большее, чем просто строка цифр, статистические «веса» между слоями. Нейронные сети прекрасно справляются с обработкой большого количества тренировочных данных и установления связей, поглощением нижележащих закономерностей или логики системы в скрытых слоях линейно алгебры; будь то обнаружение рака кожи по фотографиям или обучение письму псевдошекспировским языком. И они не могут отличить корреляцию от причинно-следственной связи.

Мечта о больших данных в медицине заключается в том, чтобы снабжать нейронную сеть «огромными массивами данных о здоровье», находить сложные, неявные отношения и выносить индивидуальные оценки в отношении пациентов. Возникают интересные дилеммы для медицинских работников. Что если такой алгоритм окажется неоправданно эффективным в диагностике состояния здоровья или назначении лечения, но у вас не будет научного понимания того, как эта связь работает на самом деле?

Слишком много потоков, которые нужно распутать

Статистические модели, которые лежат в основе таких нейронных сетей, зачастую предполагают, что переменные независимы друг от друга, но в сложной, взаимодействующей системе вроде человеческого тела, это не всегда так.

Парацетамол — одно из самых популярных болеутоляющих средств, но до сих пор ведутся активные дискуссии о его действии. В некотором смысле это известная концепция в медицинских науках — существует много явлений  и связей, которые наблюдались десятилетиями, но до сих пор плохо изучены на биологическом уровне. Любители копенгагенской интерпретации квантовой механики могут перефразировать это как «Заткнись и лечи!». Врачи-практики могут стремиться использовать любой инструмент, наиболее эффективный, независимо от того, основан ли он на глубоком научном понимании.

Разумеется, в этой области ведутся дебаты о том, не рискуем ли мы с этим подходом упустить из виду более глубокое понимание, которое в конечном счете окажется более плодотворным — например, для поиска новых лекарств.

Помимо философских закорючек, есть и практические проблемы: если вы не понимаете, как работает черный ящик медицинского алгоритма, как подходить к вопросам клинических испытаний и регулирования?

Может потребоваться прозрачность в отношении того,  как функционирует алгоритм — данных, на которые он смотрит, пороговых значений, на основе которых делает выводы или предоставляет консультации, но это может противоречить мотивам получения прибыли и стремлению к секретности в медицинских стартапах.

Но это может помешать людям пожинать плоды полезной работы таких алгоритмов. Одним из решений может быть исключение алгоритмов, которые не могут объяснить сами себя или не полагаются на хорошо понятную медицинскую науку.

Оценка алгоритмов

И многие алгоритмы улучшаются именно работая в полевых условиях. Новые алгоритмы в области здравоохранения не смогут сделать то, что физики сделали с квантовой механикой, потому что не будут развернуты в полевых условиях. Как же нам выбрать максимально многообещающий подход?

Клинические испытания, в которых используются выборки небольшого размера, например, с алгоритмами, которые пытаются персонализировать лечение для отдельных людей, также будут сложными. Создание стандартизированной системы клинических испытаний и тестирования, которая в равной степени будет применима к алгоритмам, работающим по-разному или использующим разные входные данные, будет сложной задачей. С небольшими выборками и слабым научным пониманием происходящего невозможно будет определить, преуспел алгоритм или потерпел крах, потому что он может быть неплохим в целом, но показать неудачный пример.

«Что еще более важно, идеальный алгоритм в «черном ящике» пластичный и постоянно обновляется, поэтому традиционная модель клинических испытаний не подходит, поскольку полагается на статический продукт, подлежащий стабильной оценке». Добавим в эту смесь обучение и картина становится еще более сложной.

Придется подгонять всю систему медицинских и клинических испытаний.

Достижение баланса

Неслучайно IBM пыталась изменить сферу здравоохранения, применяя свой искусственный интеллект Watson. История здравоохранения отражает историю искусственного интеллекта во многих аспектах.

Нам придется найти способ обрабатывать большие данные, использовать жуткую силу нейронных сетей и автоматизировать мышление. Баланс придется найти. Мы должны осознавать недостатки и предубеждения такого подхода к решению проблем.

Подобно нейронной сети, наши отрасли должны обучаться, расширяя эту кооперацию в будущем. При этом мы должны приветствовать эти технологии, поскольку они могут быть полезным дополнением к навыкам, знаниям и более глубокому пониманию, которое могут предоставить люди.

Давайте обсудим в нашем чате в Телеграме. Согласны?

Теги
Показать больше

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть